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Abstract 13 

It is expected that hyperresolution land modeling substantially innovates the simulation 14 

of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution 15 

land models against conventional one-dimensional land surface models is that 16 

hyperresolution land models can explicitly simulate lateral water flows. Despite many 17 

efforts on data assimilation of hydrological observations into those hyperresolution land 18 

models, how surface water flows driven by local topography matter for data assimilation 19 

of soil moisture observations has not been fully clarified. Here I perform two minimalist 20 

synthetic experiments where soil moisture observations are assimilated into an integrated 21 

surface-groundwater land model by an ensemble Kalman filter. I discuss how differently 22 

the ensemble Kalman filter works when surface lateral flows are switched on and off. A 23 

horizontal background error covariance provided by overland flows is important to adjust 24 

the unobserved state variables (pressure head and soil moisture) and parameters (saturated 25 

hydraulic conductivity). However, the non-Gaussianity of the background error provided 26 

by the nonlinearity of a topography-driven surface flow harms the performance of data 27 

assimilation. It is difficult to efficiently constrain model states at the edge of the area 28 

where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the 29 
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new challenge in land data assimilation for hyperresolution land models. This study 30 

highlights the importance of surface lateral flows in hydrological data assimilation.  31 

 32 

 33 

1. Introduction 34 

Hyperresolution land modeling is expected to improve the simulation of terrestrial water, 35 

energy, and carbon cycles, which is crucially important for meteorological, hydrological 36 

and ecological applications (see Wood et al. (2011) for a comprehensive review). While 37 

conventional land surface models (LSMs) assume that lateral water flows are negligible 38 

at the coarse resolution (>25km) and solve vertical one-dimensional Richards equation 39 

for the soil moisture simulation (e.g., Sellers et al. 1996; Lawrence et al. 2011), currently 40 

proposed hyperresolution land models, which can be applied at a finer resolution (<1km), 41 

explicitly consider surface and subsurface lateral water flows (e.g., Maxwell and Miller 42 

2005; Tian et al. 2012; Shrestha et al. 2014; Niu et al. 2014). The fine horizontal resolution 43 

can resolve slopes, which are drivers of a lateral transport of water, and realize the fully 44 

integrated surface-groundwater modeling. Previous works indicated that a lateral 45 

transport of water strongly controls latent heat flux and the partitioning of 46 

evapotranspiration into base soil evaporation and plant transpiration (e.g., Maxwell and 47 
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Condon 2016; Ji et al. 2017; Fang et al. 2017). This effect of a lateral transport of water 48 

on land-atmosphere interactions has been recognized (e.g., Williams and Maxwell 2011; 49 

Keune et al. 2016). 50 

 51 

Data assimilation has contributed to improving the performance of LSMs by fusing 52 

simulation and observation. The grand challenge of land data assimilation is to improve 53 

the simulation of unobservable variables using observations by propagating observations’ 54 

information into model’s high dimensional state and parameter space. In previous works 55 

on the conventional 1-D LSMs, many land data assimilation systems (LDASs) have been 56 

proposed to accurately estimate model’s state and parameter variables, which cannot be 57 

directly observed, by assimilating satellite and in-situ observations. For example, the 58 

optimization of LSM’s unknown parameters (e.g., hydraulic conductivity) has been 59 

implemented by assimilating remotely sensed microwave observations (e.g., Yang et al. 60 

2007; Yang et al. 2009; Bandara et al. 2014; Bandara et al. 2015; Sawada and Koike 2014; 61 

Han et al. 2014). Kumar et al. (2009) focused on the correlation between surface and root-62 

zone soil moistures to examine the potential of assimilating surface soil moisture 63 

observations to estimate root-zone soil moisture. Sawada et al. (2015) successfully 64 

improved the simulation of root-zone soil moisture by assimilating microwave brightness 65 
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temperature observations which include the information of vegetation water content. 66 

Gravity Recovery and Climate Experiment total water storage observation has been 67 

intensively used to improve the simulation of groundwater and soil moisture (e.g., Li et 68 

al. 2012; Houborg et al. 2012). Improving the simulation of state variables such as soil 69 

moisture and biomass by LDASs has contributed to accurately estimating fluxes such as 70 

evapotranspiration (e.g. Martens et al. 2017) and CO2 flux (e.g., Verbeeck et al. 2011). 71 

However, in most of the studies on the conventional 1-D LDASs, observations impacted 72 

state variables and parameters only in a single model’s horizontal grid which is identical 73 

to the location of the observation. The assumption that the water flows are restricted to 74 

vertical direction in LSMs makes it difficult to propagate observation’s information 75 

horizontally. It limits the potential of land data assimilation to fully use land hydrological 76 

observations. 77 

 78 

The hyperresolution land models, which explicitly solve surface and subsurface lateral 79 

flows, provide a unique opportunity to examine the potential of land data assimilation to 80 

propagate observation’s information horizontally in a model space and efficiently use land 81 

hydrological observations. Previous works successfully applied Ensemble Kalman Filters 82 

(EnKF) to 3-D Richards’ equation-based integrated surface-groundwater models. For 83 
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example, Camporese et al. (2009) and Camporese et al. (2010) successfully assimilated 84 

synthetic observations of surface pressure head and streamflow into the Catchment 85 

Hydrology (CATHY). Ridler et al. (2014) successfully assimilated Soil Moisture and 86 

Ocean Salinity satellite-observed surface soil moisture into the MIKE SHE distributed 87 

hydrological model (see also Zhang et al. (2015)). Kurtz et al. (2016) coupled the Parallel 88 

Data Assimilation Framework (PDAF) (Nerger and Hiller 2013) with the Terrestrial 89 

System Modelling Framework (TerrSysMP) (Shrestha et al. 2014) and successfully 90 

estimate the spatial distribution of soil moisture and saturated hydraulic conductivity in 91 

the synthetic experiment (see also Zhang et al. (2018)). In addition, Kurtz et al. (2016) 92 

indicated that their EnKF approach is computationally efficient in high-performance 93 

computers. Those studies have significantly contributed to fully assimilating the new 94 

high-resolution soil moisture observations such as Sentinel-1 (e.g., Paroscia et al. 2013) 95 

 96 

Although the data assimilation of hydrological observations into hyperresolution land 97 

models has been successfully implemented in the synthetic experiments, it is unclear how 98 

topography-driven surface lateral water flows matter for data assimilation of soil moisture 99 

observations. Previous studies on data assimilation with high resolution models mainly 100 

focused on assimilating groundwater observations (e.g., Ait-El-Fquih et al. 2016; 101 
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Rasmussen et al. 2015; Hendricks-Franssen et al. 2008). There are some applications 102 

which focused on the observation of soil moisture and pressure head in shallow 103 

unsaturated soil layers. However, in those studies, topography-driven surface flow has 104 

not been considered in the experiment (Kurtz et al. 2016) or the role of them in 105 

assimilating observations into the hyperresolution land models has not been quantitatively 106 

discussed (Camporese et al. 2010; Camporese et al. 2009). This study aims at clarifying 107 

if surface lateral flows matter for data assimilation of soil moisture observations into 108 

hyperresolution land models by a minimalist numerical experiment.  109 

 110 

 111 

2. Methods 112 

2.1. Model 113 

ParFlow is an open source platform which realizes fully integrated surface-groundwater 114 

flow modeling (Kollet and Maxwell 2006; Maxwell et al. 2015). This model can be 115 

efficiently parallelized in high performance computers and has been widely used as a core 116 

hydrological module in hyperresolution land models (e.g., Maxwell and Kollet 2008; 117 

Maxwell and Condon 2016; Fang et al. 2017; Kurtz et al. 2016; Maxwell et al. 2011; 118 

Williams and Maxwell 2011; Shrestha et al. 2014). Since I used this widely adopted solver 119 

7

https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
c© Author(s) 2020. CC BY 4.0 License.



as is and added nothing new to the model physics, I described the method of ParFlow to 120 

simulate integrated surface-subsurface water flows briefly and omitted the details of 121 

numerical methods. The complete description of ParFlow can be found in Kollet and 122 

Maxwell (2006), Maxwell et al. (2015) and references therein. 123 

 124 

In the subsurface, ParFlow solves the variably saturated Richards equation in three 125 

dimensions.  126 

𝑆𝑆𝑆𝑊(ℎ)
𝜕ℎ

𝜕𝑡
+ 𝜙𝑆𝑊(ℎ)

𝜕𝑆𝑊(ℎ)

𝜕𝑡
= ∇ ∙ 𝐪 + 𝑞𝑟  (1) 127 

𝐪 = −𝑲𝒔(𝒙)𝑘𝑟(ℎ)[∇(ℎ + 𝑧)𝑐𝑜𝑠𝜃𝑥 + 𝑠𝑖𝑛𝜃𝑥] (2) 128 

In equation (1), h is the pressure head [L]; z is the elevation with the z axis specified as 129 

upward [L]; 𝑆𝑆  is the specific storage [L-1]; 𝑆𝑊  is the relative saturation; 𝜙  is the 130 

porosity [-]; 𝑞𝑟 is a source/sink term. Equation (2) describes the flux 𝐪 131 

[LT-1] by Darcy’s law, and 𝑲𝒔 is the saturated hydraulic conductivity tensor [LT-1]; 𝑘𝑟 132 

is the relative permeability [-]; 𝜃 is the local angle of topographic slope (see Maxwell et 133 

al. 2015). In this paper, the saturated hydraulic conductivity is assumed to be isotropic 134 

and a function of z: 135 

𝑲𝒔 = 𝐾𝑠(𝑧) = 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒exp⁡(−𝑓(𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑧)) (3) 136 
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where 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the saturated hydraulic conductivity at the surface soil, and 𝑧𝑠𝑢𝑟𝑓𝑎𝑐𝑒 137 

is the elevation of the soil surface. The saturated hydraulic conductivity decreases 138 

exponentially as the soil depth increases (Beven 1982). A van Genuchten relationship 139 

(van Genuchten 1980) is used for the relative saturation and permeability functions. 140 

𝑆𝑊(ℎ) =
𝑆𝑠𝑎𝑡−𝑆𝑟𝑒𝑠

(1+(𝛼ℎ)𝑛)
(1−

1
𝑛
)
+ 𝑆𝑟𝑒𝑠   (4) 141 

𝑘𝑟(ℎ) =

(1−
(𝛼ℎ)𝑛−1

(1+(𝛼ℎ)𝑛)
(1−

1
𝑛
)
)2

(1+(𝛼ℎ)𝑛)

(1−
1
𝑛
)

2

    (5) 142 

where 𝛼 [L-1] and n [-] are soil parameters, 𝑆𝑠𝑎𝑡 is the relative saturated water content 143 

and 𝑆𝑟𝑒𝑠 is the relative residual saturation. 144 

 145 

Overland flow is solved by the two-dimensional kinematic wave equation. The dynamics 146 

of the surface ponding depth, h [L], can be described by: 147 

𝐤 ∙ [−𝐾𝑠(𝑧)𝑘𝑟(ℎ) ∙ ∇(ℎ + 𝑧)] =
𝜕‖ℎ,0‖

𝜕𝑡
− ∇ ∙ ‖ℎ, 0‖𝒗𝒔𝒘 + 𝑞𝑟 (4) 148 

In equation (4), 𝐤 is the unit vector in the vertical and ‖ℎ, 0‖ indicates the greater value 149 

of the two quantities following the notation of Maxwell et al. (2015). This formulation 150 

results in the overland flow equation being represented as a boundary condition to the 151 

variably saturated Richards equation (Kollet and Maxwell 2006). If h < 0, equation (4) 152 

describes that vertical fluxes across the land surface is equal to the source/sink term 𝑞𝑟 153 

(i.e., rainfall and evapotranspiration). If h > 0, the terms on the right-hand side of equation 154 
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(4), which indicate water fluxes routed according to surface topography, are active. 𝒗𝒔𝒘 155 

is the two-dimensional depth-averaged water flow velocity [LT-1] and estimated by the 156 

Manning’s law: 157 

𝒗𝒔𝒘,𝒙 = (
√𝑆𝑓,𝑥

𝑛𝑀
ℎ
2

3) , 𝒗𝒔𝒘,𝒚 = (
√𝑆𝑓,𝑦

𝑛𝑀
ℎ
2

3) (5) 158 

where 𝑆𝑓,𝑥 and 𝑆𝑓,𝑦 are the friction slopes [-] for the x- and y-direction, respectively; 159 

𝑛𝑀  is the Manning’s coefficient [TL-1/3]. In the kinematic wave approximation, the 160 

friction slopes are set to the bed slopes. The methodology of discretization and numerical 161 

method to solve equations (1-5) can be found in Kollet and Maxwell (2006). 162 

 163 

 164 

2.2. Data Assimilation 165 

In this paper, the ensemble Kalman filter (EnKF) was applied to assimilate soil moisture 166 

observations into ParFlow. The EnKF has widely been applied to hyper-resolution land 167 

models (e.g., Camporese et al. (2009); Camporese et al. (2010); Ridler et al. (2014); 168 

Zhang et al. (2015); Kurtz et al. (2016); Zhang et al. (2018)). I examined if surface lateral 169 

flows matter for data assimilation of soil moisture observations into hyperresolution land 170 

models using this widely adopted data assimilation method.  171 

 172 
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The Parflow model can be formulated as a discrete state-space dynamic system: 173 

𝒙(𝑡 + 1) = 𝑓(𝒙(𝑡), 𝜽, 𝒖(𝑡)) + 𝒒(𝑡)    (8) 174 

where 𝒙(𝑡)  is the state variables (i.e. pressure head), 𝜽  is the time-invariant model 175 

parameters (i.e. saturated hydraulic conductivity), 𝒖(𝑡)  is the external forcing (i.e., 176 

rainfall and evapotranspiration), and 𝒒(𝑡)  is the noise process which represents the 177 

model error. In data assimilation, it is useful to formulate an observation process as 178 

follows: 179 

𝒚𝑓(𝑡) = ℋ(𝒙(𝑡)) + 𝒓(𝑡)      (9) 180 

where 𝒚𝑓(𝑡) is the simulated observation, ℋ is the observation operator which maps 181 

the model’s state variables into the observable variables, and⁡𝒓(𝑡) is the noise process 182 

which represents the observation error. The purpose of EnKF (and any other data 183 

assimilation methods) is to find the optimal state variables 𝒙(𝑡) based on the simulation 184 

𝒚𝑓(𝑡) and observation (defined as 𝒚𝑜) considering their errors (𝒒(𝑡) and 𝒓(𝑡)) 185 

 186 

The general description of the Kalman filter is the following: 187 

𝒙𝑓(𝑡) = ℳ[𝒙𝑎(𝑡 − 1)] (6) 188 

𝒙𝑎(𝑡) = 𝒙𝑓(𝑡) + 𝑲[𝒚𝑜 −ℋ(𝒙𝑓(𝑡))] (7) 189 

𝐊 = 𝑷𝑓𝓗𝑻(𝓗𝑷𝒇𝓗𝑻 + 𝑹)−𝟏 (8) 190 
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𝑷𝒂 = (𝑰 − 𝑲𝓗)𝑷𝒇 (9) 191 

I follow the notation of Houtekamer and Zhang (2016). Superscripts f and a are forecast 192 

and analysis, respectively. In equation (6), a forecast model ℳ (ParFlow in this study) 193 

is used to obtain a prior estimate at time t, 𝒙𝑓(𝑡), from the estimation at the previous time 194 

𝒙𝑎(𝑡 − 1). In equation (7), a prior estimate 𝒙𝑓(𝑡) is updated to the analysis state, 𝒙𝑎(𝑡), 195 

using new observations 𝑦𝑜. The Kalman gain matrix 𝐊, calculated by equation (8), gives 196 

an appropriate weight for the observations with an error covariance matrix 𝑹, and the 197 

prior with an error covariance matrix 𝑷𝑓. 𝑷𝒂 is an updated analysis error covariance. 198 

To calculate 𝐊 , the observation operator 𝓗  is needed to map from model space to 199 

observation space. It should be noted that the equations (6-9) give an optimal estimation 200 

only when the model and observation errors follow the Gaussian distribution. When the 201 

probabilistic distribution of the error in either model or observation has a non-Gaussian 202 

structure, results of the Kalman filter are suboptimal. This point is important to interpret 203 

the results of this study. 204 

 205 

EnKF is the Monte Carlo implementation of equations (6-9). To compute the Kalman gain 206 

matrix, 𝐊, ensemble approximations of 𝑷𝑓𝓗𝑻 and 𝓗𝑷𝒇𝓗𝑻 can be given by: 207 

𝑷𝒇𝓗𝑻 ≡
1

𝑘−1
∑ (𝒙𝑖

𝑓
− 𝒙𝑓̅̅ ̅)𝑘

𝑖=1 (ℋ𝒙𝑖
𝑓
−ℋ𝒙𝑓̅̅ ̅̅ ̅̅ )𝑇 (10) 208 
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𝓗𝑷𝒇𝓗𝑻 ≡
1

𝑘−1
∑ (ℋ𝒙𝑖

𝑓
−ℋ𝒙𝑓̅̅ ̅̅ ̅̅ )𝑘

𝑖=1 (ℋ𝒙𝑖
𝑓
−ℋ𝒙𝑓̅̅ ̅̅ ̅̅ )𝑇 (11) 209 

where 𝒙𝑖
𝑓
  is the ith member of a k-member ensemble prior and 𝒙𝑓̅̅ ̅ =

1

𝑘
∑ 𝒙𝑖

𝑓𝑘
𝑖=1   and 210 

ℋ𝒙𝑓̅̅ ̅̅ ̅̅ =
1

𝑘
∑ ℋ𝒙𝑖

𝑓𝑘
𝑖=1 . 211 

 212 

Once 𝒙𝑎̅̅ ̅ = ∑ 𝒙𝑖
𝑎𝑘

𝑖=1  (𝒙𝑖
𝑎 is the ith member of a k-member ensemble analysis) and 𝑷𝒂 =213 

𝟏

𝒌−𝟏
∑ (𝒙𝑖

𝑎 − 𝒙𝑎̅̅ ̅)𝑘
𝑖=1 (𝒙𝑖

𝑎 − 𝒙𝑎̅̅ ̅)𝑇  are computed by equations (6-11), there are many 214 

choices of an analysis ensemble. Although equations (6-11) can calculate the mean and 215 

variance of the ensemble members, they do not tell how to adjust the state of the ensemble 216 

members in order to realize the estimated mean and variance. There are many proposed 217 

flavors of EnKF and one of the differences among them is the method to choose the 218 

analysis 𝒙𝑖
𝑎. In this paper, the Ensemble Transform Kalman Filter (ETKF; Bishop et al. 219 

2001; Hunt et al. 2007) was used to transport forecast ensembles to analysis ensembles. 220 

ETKF has been used for hyperresolution land data assimilation (e.g., Kurtz et al. 2016). 221 

Please refer to Hunt et al. (2007) for the complete description of the ETKF and its 222 

localized version, the Local Ensemble Transform Kalman Filter (LETKF). The open 223 

source available at https://github.com/takemasa-miyoshi/letkf was used in this study as 224 

the ETKF code library. 225 

 226 
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In many ensemble Kalman filter systems, the ensemble spread, 𝑷𝒂, tends to become too 227 

underdispersive to stably perform data assimilation cycles without any ensemble inflation 228 

methods (Houtekamer and Zhang, 2016). To overcome this limitation,⁡𝑷𝒂 is arbitrarily 229 

inflated after data assimilation. In this paper, the relaxation to prior perturbation method 230 

(RTPP) of Zhang et al. (2004) was used to maintain an appropriate ensemble spread. In 231 

the RTPP, the computed analysis perturbations are relaxed back to the forecast 232 

perturbations: 233 

𝒙𝑖,𝑛𝑒𝑤
𝑎 − 𝒙𝑎̅̅ ̅ = (1 − α)(𝒙𝑖

𝑎 − 𝒙𝑎̅̅ ̅) + 𝛼(𝒙𝑖
𝑓
− 𝒙𝑓̅̅ ̅), 0 ≤ 𝛼 ≤ 1 (12) 234 

where⁡α was set to 0.975 in this study. If α = 1, the analysis spread is identical to the 235 

background spread. Many studies show that the ensemble inflation works well when α 236 

remains fairly close to 1 (see also the comprehensive review by Houtekamer and Zhang 237 

2016). 238 

 239 

In the data assimilation experiments, I adjusted pressure head by data assimilation so that 240 

𝒙𝑓 is pressure head. Since the surface saturated hydraulic conductivity was also adjusted, 241 

𝒙𝑓  includes log-transformed 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 . I assimilated volumetric soil moisture 242 

observations so that 𝒚𝑓 and ⁡𝒚𝑜 are simulated and observed volumetric soil moisture, 243 

respectively. The van Genuchten relationship converts the adjusted state variables 𝒙𝑓 to 244 

14

https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
c© Author(s) 2020. CC BY 4.0 License.



the observable variables 𝒚𝑓  and can be recognized as an observation operator ℋ . 245 

However, since volumetric soil moisture 𝒚𝑓⁡has already been calculated by Parflow, I did 246 

not need the van Genuchten relationship in data assimilation. 247 

 248 

 249 

2.3. Kullback-Leibler divergence 250 

To evaluate the non-Gaussianity of the background error sampled by an ensemble, I used 251 

the Kullback-Leibler divergence (KLD) (Kullback and Leibler 1951): 252 

𝐷𝐾𝐿(𝑝, 𝑞) = ∑ 𝑝(𝑖)𝑙𝑜𝑔
𝑝(𝑖)

𝑞(𝑖)𝑖  (13) 253 

where 𝐷𝐾𝐿(𝑝, 𝑞) is the KLD between two probabilistic distribution functions (PDFs), 𝑝 254 

and 𝑞 . If two PDFs are equal for all 𝑖 , 𝐷𝐾𝐿(𝑝, 𝑞) = 0 . A large value for 𝐷𝐾𝐿(𝑝, 𝑞) 255 

indicates that the two PDFs, 𝑝 and 𝑞, substantially differ from each other. Therefore, 256 

the KLD can be used as an index to evaluate the closeness of two PDFs. In this study, I 257 

compared the PDF of the ensemble simulation (p in equation (13)) with the Gaussian PDF 258 

which has the mean and variance of the ensembles (q in equation (13)). A large value for  259 

𝐷𝐾𝐿(𝑝, 𝑞)  indicates the state variables simulated by ensembles do not follow the 260 

Gaussian PDF. It should be noted that the KLD is not symmetric (𝐷𝐾𝐿(𝑝, 𝑞) ≠ 𝐷𝐾𝐿(𝑞, 𝑝)). 261 

The KLD has been used to quantitatively evaluate the Gaussianity of the sampled 262 
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background error in the studies on data assimilation (e.g., Kondo and Miyoshi 2019; Duc 263 

and Saito 2018). 264 

 265 

 266 

3. Synthetic experiments 267 

In this study, I performed two synthetic experiments. In the synthetic experiments, I 268 

generated the synthetic truth of the state variables by driving ParFlow with the specified 269 

parameters and input data. Then the synthetic observations were generated by adding the 270 

Gaussian white noise to this synthetic truth. The performance of data assimilation was 271 

evaluated by comparing the estimated state and parameter values by ETKF with the 272 

synthetic truth. This synthetic experiment has been recognized as an important research 273 

method to analyze how data assimilation works (e.g., Moradkhani et al. 2005; Camporese 274 

et al. 2009; Vrugt et al. 2013; Kurtz et al. (2016); Sawada et al. 2018) 275 

 276 

 277 

3.1. Simple 2-D slope with homogeneous hydraulic conductivity 278 

3.1.1. Experiment Design 279 
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The synthetic experiment was implemented to examine how topography-driven surface 280 

lateral flows contribute to efficiently propagating observation’s information horizontally 281 

in the data assimilation of soil moisture observation. Two synthetic reference runs were 282 

created by Parflow. The 2-D domain has a horizontal extension of 4000m and a vertical 283 

extension of 5m. The domain of the virtual slope was horizontally discretized into 40 grid 284 

cells with a size of 100m and vertically discretized into 50 grid cells with a size of 0.10m. 285 

The domain has a 25% slope. In two synthetic reference runs, it heavily rains only in the 286 

upper half of the slope (2000m<x<4000m). Although this rainfall distribution is 287 

unrealistic, the effect of surface lateral flows on data assimilation can clearly be discussed 288 

in this simplified problem setting. More realistic rainfall distribution will be used in the 289 

next synthetic experiment (see section 3.2). A constant rainfall rate of 50mm/h was 290 

applied for 3 hours and then the period with no rainfall and evaporation of 0.075mm/h 291 

lasted for 117 hours. This 120-hour rain/no rain cycle was repeatedly applied to the 292 

domain. There is no rainfall in the lower half of the slope (0m<x<2000m). The 293 

configurations described above were schematically shown in Figure 1a. The parameters 294 

of the van Genuchten relationship, alpha and n, were set to 1.5 [m-1] and 1.75, respectively. 295 

Those values are in the reasonable range estimated by the published literature (e.g., 296 

Ghanbarian-Alavijeh et al. 2010). The porosity, 𝜙 in equation (1), was set to 0.40. The 297 
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Manning’s coefficient, 𝑛𝑀  in equation (5), was set to 5.52 × 10−6  [m-1/3h]. These 298 

clayey soil properties described above are applied to the whole domain. The groundwater 299 

table was located at z=3m and the hydrostatic pressure gradient was assumed for the 300 

initial pressure heads in the unsaturated soil layers. 301 

 302 

The difference between two synthetic reference runs is the value of saturated hydraulic 303 

conductivity. The surface saturated hydraulic conductivity, 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒  in equation (3), 304 

was set to 0.005 [m/h] in one reference, and 0.02 [m/h] in the other. These surface 305 

saturated hydraulic conductivities described above are applied to the whole domain. 306 

Figure 1 shows the difference of the response to heavy rainfall between the two synthetic 307 

reference runs. In the case of the low saturated hydraulic conductivity (hereafter called 308 

the LOW_K reference), larger surface lateral flows are generated than the case of the high 309 

saturated hydraulic conductivity (hereafter called the HIGH_K reference). In the LOW_K 310 

reference, the topography-driven surface lateral flows reach the left edge of the domain 311 

(Figure 1b). In the HIGH_K reference, supplied water moves vertically rather than 312 

horizontally and the topography-driven surface flow reaches around x = 1000~1500m 313 

(Figure 1d). 314 

 315 
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For the data assimilation experiment, an ensemble of 50 realizations was generated. Each 316 

ensemble member has different saturated hydraulic conductivity and rainfall rate. 317 

Lognormal multiplicative noise was added to surface saturated hydraulic conductivity 318 

and rainfall rate of the synthetic reference runs. This specification of uncertainty in 319 

rainfall was also adopted in Crow et al. (2011). The two parameters of the lognormal 320 

distribution, commonly called μ and σ, were set to 0 and 0.15, respectively. The initial 321 

groundwater depth of each ensemble member was drawn from the uniform distribution 322 

from 2.0m to 3.5m. The hydrostatic pressure gradient was assumed for the initial pressure 323 

heads in the unsaturated soil layers. 324 

 325 

The virtual hourly observations were generated by adding the Gaussian white noise whose 326 

mean is zero to the volumetric soil moisture simulated by the synthetic reference runs. 327 

The observation error (the standard deviation of the added Gaussian white noise) was set 328 

to 0.05 m3/m3. It was assumed that the volumetric soil moistures can be observed in every 329 

model’s soil layer from surface to the depth of 1m at the specific location. These soil 330 

moisture observations can be obtained in the in-situ observation sites (e.g., Dorigo et al., 331 

2017). In the section 3.2, I will assume that only surface soil moisture observation can be 332 

accessed, which is more realistic since satellite sensors can observe only surface soil 333 
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moisture. I assumed that the small part of the domain can be observed. The two scenarios 334 

of the observation’s location are provided. In the first scenario (hereafter called the UP_O 335 

scenario), the volumetric soil moisture at the upper part of the slope (x = 2500m) was 336 

observed. In the UP_O scenario, I could observe the volumetric soil moisture in the upper 337 

part of the slope where it heavily rains and tried to infer the soil moisture in the lower part 338 

of the slope where it does not rain by propagating the observation’s information downhill. 339 

In the second scenario (hereafter called the DOWN_O scenario), the volumetric soil 340 

moisture at the lower part of the slope (x = 1500m) was observed. In the DOWN_O 341 

scenario, I could observe the volumetric soil moisture in the lower part of the slope where 342 

it does not rain and tried to infer the soil moisture in the upper part of the slope where it 343 

heavily rains by propagating the observation’s information uphill. 344 

 345 

Since I had the two synthetic reference runs (the HIGH_K and LOW_K references) and 346 

the two observation scenarios (the UP_O and DOWN_O scenarios), I implemented totally 347 

four data assimilation experiments. Table 1 summarizes the data assimilation experiments 348 

implemented in this study. For instance, in the HIGH_K-UP_O experiment, I chose the 349 

HIGH_K reference and generated an ensemble of 50 realizations from the HIGH_K 350 

reference. The soil moisture observations were generated from the HIGH_K reference at 351 
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the location of x = 2500m and assimilated into the model every hour. The simulated 352 

volumetric soil moisture of the data assimilation experiment was compared with that of 353 

the HIGH_K reference. 354 

 355 

In addition to the data assimilation (DA) experiments, I implemented the NoDA 356 

experiment (also called the open-loop experiment in the literature of the LDAS study) in 357 

which the ensemble was used but no observation data were assimilated. Please note that 358 

in the NoDA experiment, the true rainfall rate and saturated hydraulic conductivity were 359 

unknown so that I could not accurately estimate the synthetic true state variables. I will 360 

evaluate how this negative impact of uncertainties in rainfall and saturated hydraulic 361 

conductivity can be mitigated by data assimilation in the DA experiment. 362 

 363 

As evaluation metrics, root-mean-square-error (RMSE) was used: 364 

RMSE = √
1

𝑘
∑ (𝐹𝑖 − 𝑇)2𝑘
𝑖=1  (14) 365 

where k is the ensemble number, 𝐹𝑖 is the volumetric soil moisture simulated by the i-th 366 

member in the DA or NoDA experiment, T is the volumetric soil moisture simulated by 367 

the synthetic reference run. 368 

 369 
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To evaluate the impact of data assimilation, the improvement rate (IR) was defined and 370 

calculated by the following equation: 371 

IR =
𝑅𝑀𝑆𝐸𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑅𝑀𝑆𝐸𝑁𝑜𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑅𝑀𝑆𝐸𝑁𝑜𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (15) 372 

where 𝑅𝑀𝑆𝐸𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝑅𝑀𝑆𝐸𝑁𝑜𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   are time-mean RMSE of the DA and NoDA 373 

experiments, respectively. The negative IR indicates that data assimilation positively 374 

impacts the simulation of soil moisture. The metrics described above was calculated in 375 

the whole domain. In the DA experiment, soil moisture values before the update by ETKF 376 

(i.e. initial guess) were used to calculate the metrics. 377 

 378 

Four of 120-hour rain/no rain cycles were applied so that the computation period was 480 379 

hours. The spin-up results in the first 120 hours were not used to calculate the evaluation 380 

metrics. Since the steady state of groundwater level is not the scope of this paper, the long 381 

spin-up is not absolutely necessary. 382 

 383 

 384 

3.1.2. Results 385 

Figure 2a shows the IR of the LOW_K-UP_O experiment. The time series of the DA and 386 

NoDA experiment and the synthetic reference run in the LOW_K-UP_O experiment can 387 
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be found in Figure S1. The data assimilation efficiently propagates the information of the 388 

observations located in the upper part of the slope (see the black arrow in Figure 2a) both 389 

horizontally and vertically. Despite the uncertainty in rainfall and hydraulic conductivity, 390 

RMSE is reduced by data assimilation not only directly under the observation but also the 391 

lower part of the slope where it does not rain. The estimated 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈ 0.00508⁡[m/h] 392 

by ETKF is mostly identical to the synthetic truth. However, the increase of RMSE by 393 

data assimilation can be found at the left edge of the domain, which is far from the location 394 

of the observation. The impact of data assimilation on the surface soil moisture simulation 395 

is small because the volumetric soil moisture’s RMSE of the NoDA experiment in this 396 

surface soil layer is already small (≤ 0.01m3/m3) in the case of the LOW_K reference so 397 

that any improvements do not make sense. 398 

 399 

Figure 2b shows the IR of the LOW_K-DOWN_O experiment (see also Figure S2 for 400 

time series). The IR’s spatial pattern of the LOW_K-DOWN_O experiment is similar to 401 

that of the LOW_K-UP_O experiment except for the left edge of the domain. It is 402 

promising that I can accurately infer soil moisture in the region where it heavily rains 403 

from the shallow soil moisture observations in the region where it does not rain. The 404 

estimated 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈ 0.00512⁡[m/h] by ETKF is mostly identical to the synthetic truth.  405 
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 406 

Figure 3a shows the difference of time-mean RMSEs (𝑅𝑀𝑆𝐸𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  in equation (15)) 407 

between the LOW_K-UP_O and LOW_K-DOWN_O experiments. Although observing 408 

the lower part of the slope slightly improves the soil moisture simulation at the left edge 409 

of the domain compared with observing the upper part of the slope (the reason for it will 410 

be explained later), there are few differences between the UP_O and DOWN_O scenarios 411 

in the case of the LOW_K reference. The soil moisture observations have large 412 

representativeness and I can efficiently infer soil moisture in the soil columns which are 413 

horizontally and vertically far from the observations. 414 

 415 

Figure 2c shows the IR of the HIGH_K-UP_O experiment (see also Figure S3 for time 416 

series). The data assimilation significantly reduces RMSE of the soil moisture simulation 417 

directly under the observations (see the black arrow in Figure 2c), which indicates that 418 

the data assimilation efficiently propagates the information of the observations vertically. 419 

The saturated hydraulic conductivity estimated by ETKF is mostly identical to the 420 

synthetic truth (𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈ 0.0204 [m/h]). However, the impact of the data assimilation 421 

on the soil moisture simulation in the lower part of the slope around x=1500m is marginal 422 

although there are large RMSE in the NoDA experiment (>0.05m3/m3) at the edge of the 423 
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area where topography-driven surface flow reaches in the HIGH_K reference (see Figure 424 

1d). 425 

 426 

Figure 2d shows the IR of the HIGH_K-DOWN_O experiment (see also Figure S4 for 427 

time series). Although the observations in the lower part of the slope (see the black arrow 428 

in Figure 2d) significantly contribute to improving the soil moisture simulation in the 429 

downstream area of the observation and accurately estimating 𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈ 0.0208 430 

[m/h], the impact of the data assimilation on the shallow soil moisture simulation around 431 

x=500~1000m is marginal. As I found in the LOW_K-DOWN_O experiment, the shallow 432 

soil moisture observations in the region where it does not rain can improve the soil 433 

moisture simulation in the region where it heavily rains. However, the IR of the HIGH_K-434 

DOWN_O experiment in the upper part of the slope is smaller than that of the LOW_K-435 

DOWN_O experiment (see Figure 2b and 2d). 436 

 437 

The high representativeness of the observations which I found in the case of the LOW_K 438 

reference (i.e. the small difference of RMSEs between two observation scenarios) cannot 439 

be found in the case of the HIGH_K reference. Figure 3b shows the difference of time-440 

mean RMSEs (𝑅𝑀𝑆𝐸𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in equation (15)) between the HIGH_K-UP_O and HIGH_K-441 
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DOWN_O experiments. Compared with the LOW_K reference case (Figure 3a), there 442 

are significant differences between the UP_O and DOWN_O scenarios in the case of 443 

higher saturated hydraulic conductivity. In this case, the vertical propagation of the 444 

observations’ information is more efficient than the horizontal propagation.  445 

 446 

The relatively low efficiency of the data assimilation and the low representativeness of 447 

the soil moisture observations in the case of the HIGH_K reference are caused by the 448 

non-Gaussian background error distribution. I calculated KLD by comparing the PDF of 449 

the NoDA ensemble (𝑝 in equation (13)) with the Gaussian PDF which has the mean and 450 

variance of the NoDA ensemble (𝑞 in equation (13)). Figure 4 shows that the NoDA 451 

ensemble in the case of the HIGH_K reference has stronger non-Gaussianity than the case 452 

of the LOW_K reference especially in the shallow soil layers. The strong non-Gaussianity 453 

of the NoDA ensemble generated from the HIGH_K reference can be found at the edge 454 

of the area where the topography-driven surface flow reaches (Figure 1d). Figure 5 shows 455 

that there is the bifurcation of the ensemble in this region when the ensemble is generated 456 

from the HIGH_K reference. The process of topography-driven surface flows is switched 457 

on if and only if the surface soil is saturated (see equation (4)) so that the ensemble tends 458 

to be bifurcated into the members with surface flows and without surface flows. As I 459 
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mentioned in section 2.2, in the ETKF, the state and parameter variables are adjusted 460 

assuming the Gaussian PDF of the model’s error and the linear relationship between 461 

observed variables and unobserved variables. Therefore, the non-Gaussianity of the prior 462 

ensemble induced by the strong non-linear dynamics of surface lateral flows makes the 463 

ETKF inefficient. It is more difficult to reconstruct 3-D fields of soil moisture in high 464 

conductivity soils since the 1-D vertical water movement is more dominant. The absolute 465 

RMSE of the NoDA experiment in the HIGH_K reference is larger than the LOW_K 466 

reference in many places (not shown). Please note that the non-Gaussianity can also be 467 

found in the LOW_K reference at the edge of the domain (x=500m) due to the non-linear 468 

dynamics of surface lateral flows, which causes the degradation of the soil moisture 469 

simulation in the LOW_K-UP_O experiment (see Figure 2a). 470 

 471 

One of the major simplifications in this experiment is spatially homogeneous surface 472 

saturated hydraulic conductivity. The optimization of it can efficiently improve the soil 473 

moisture simulation in the whole domain. However, the optimization of this 474 

homogeneous surface saturated hydraulic conductivity has a limited impact on the soil 475 

moisture simulation. Figure S5 shows the IR of the HIGH_K-DOWN_O experiment 476 

where the parameter optimization by ETKF is switched off. Even if I do not optimize the 477 
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surface saturated hydraulic conductivity, I could obtain the similar IR to the original 478 

experiment and the shallow soil moisture observations in the region where it does not rain 479 

can improve the soil moisture simulation in the region where it heavily rains. The 480 

horizontal propagation of the observations’ information shown in this experiment was 481 

brought out not only by the estimation of spatially homogeneous saturated hydraulic 482 

conductivity but also by the adjustment of state variables (i.e., pressure head and 483 

volumetric soil moisture). 484 

 485 

Please note that the improvement of the soil moisture simulation cannot be found if the 486 

topography-driven surface flow is neglected. Figure S6 shows the IR of the LOW-487 

K_DOWN-O experiment where the topography-driven surface flow is neglected in the 488 

ParFlow simulation. Please note that although many conventional land surface models 489 

neglected or parameterized lateral flows, this assumption can be applied only in the coarse 490 

spatial resolution (>25km), which is not the case of this experimental setting. The 491 

imperfect model physics of ParFlow substantially degrades the skill to simulate soil 492 

moisture and data assimilation cannot compensate this degradation. This point will also 493 

be discussed in the section 3.2 more deeply. 494 

 495 
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3.2. Simple 3-D slope with heterogeneous hydraulic conductivity 496 

3.2.1. Experiment design 497 

To further demonstrate how land data assimilation works with topography-driven surface 498 

lateral flows, I implemented another synthetic experiment which is more realistic than 499 

that shown in section 3.1. The 3-D domain has a horizontal extension of 4000 m×4000m 500 

and a vertical extension of 3m. The domain was horizontally discretized into 40×40 grid 501 

cells with a size of 100m×100m and vertically discretized into 30 grid cells with a size 502 

of 0.1m. The domain has a 10% slope in both x and y directions (see Figure 6a). The 503 

parameters of the van Genuchten relationship, porosity and Manning’s coefficient were 504 

set to the same variables for the synthetic experiment in section 3.1. 505 

 506 

The spatially heterogeneous surface saturated hydraulic conductivity was generated 507 

following Kurtz et al. (2016). The field of 𝑙𝑜𝑔10(𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒)  was generated by two-508 

dimensional unconditioned sequential Gaussian simulation. A Gaussian variogram with 509 

nugget, sill, and range values of  0.0 𝑙𝑜𝑔10(m/h) , 0.1 𝑙𝑜𝑔10(𝑚
2ℎ2) , and 12 model 510 

grids (1200m), respectively was used to simulate the spatial distribution of 511 

𝑙𝑜𝑔10(𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒). A constant value of -2.30 𝑙𝑜𝑔10(m/h) (i.e. 0.005 (m/h)) was added 512 

to the generated field so that the mean of the logarithm of surface saturated hydraulic 513 
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conductivity was set to -2.30 (i.e. 0.005(m/h)). This method to generate the field of the 514 

saturated hydraulic conductivity has been used previously (e.g., Kurtz et al. 2016). 515 

Subsurface saturated hydraulic conductivity was calculated by equation (3). An ensemble 516 

of 51 realizations of 𝑙𝑜𝑔10(𝐾𝑠,𝑠𝑢𝑟𝑓𝑎𝑐𝑒) was generated and one of them was chosen as a 517 

synthetic reference (Figure 6a). The remaining 50 members were used for data 518 

assimilation experiments. 519 

 520 

A rainfall rate R(x, y) (mm/h) was modelled by a logistic function: 521 

R(x, y) =
𝑅𝑚𝑎𝑥

1+100exp⁡(−0.2×
𝑥+𝑦

2
)
 (16) 522 

where x and y are horizontal grid numbers (1 ≤ x ≤ 40, 1 ≤ y ≤ 40). In the synthetic 523 

reference, the maximum rainfall rate in the domain, 𝑅𝑚𝑎𝑥, was set to 50 (mm/h) (Figure 524 

6b). This rainfall rate was applied for 3 hours and then the period with no rainfall and 525 

evaporation of 0.075mm/h lasted for 117 hours. For data assimilation experiment, an 526 

ensemble of 50 realization of R(x, y)  was generated by adding a lognormal 527 

multiplicative noise to 𝑅𝑚𝑎𝑥  of the synthetic reference. The two parameters of the 528 

lognormal distribution, commonly called μ and σ, were set to 0 and 0.15, respectively.  529 

 530 
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Figure 6c shows the distribution of surface soil moisture in the synthetic reference run. 531 

Strong rainfall rate applied in the upper part of the slope generates the topography-driven 532 

surface lateral flows. The virtual hourly observations were generated by adding the 533 

Gaussian white noise, whose mean is zero and standard deviation is 0.05 m3/m3, to the 534 

volumetric surface soil moisture simulated by the synthetic reference run. Unlike the 535 

experiment in section 3.1, only surface soil moisture can be observed in this synthetic 536 

experiment, which makes this experiment more realistic since satellite sensors can 537 

observe only surface soil moisture. Three different observing networks with different 538 

observation densities were used (Figure 7). The observing networks shown in Figure 7a, 539 

7b, and 7c have totally 1, 9, and 361 observations and are called obs1, obs9, and obs361, 540 

respectively. 541 

 542 

In the DA experiments, those virtual observations of surface soil moisture were 543 

assimilated every hour to adjust pressure head and saturated hydraulic conductivity. As I 544 

did in the section 3.1, the NoDA experiments were also implemented. The two different 545 

configurations of ParFlow were used for both DA and NoDA experiments. In the first 546 

configuration, called OF (Overland Flow), Parflow explicitly solves overland flows. In 547 

the second configuration, called noOF, Parflow assumes the flat terrain for surface flows 548 
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so that no overland flows are generated. Since the synthetic reference run explicitly 549 

considers the topography-driven surface flow, the configuration of noOF assumes that the 550 

model physics is imperfect. I implemented 8 numerical experiments which are 551 

summarized in Table 2. For example, the OF_DA_obs9 experiment is the data 552 

assimilation experiment with the observing network shown in Figure 7b, in which 553 

Parflow explicitly solves the topography-driven surface flow. The noOF_NoDA is the 554 

model run without assimilating observations, in which Parflow does not consider the 555 

topography-driven surface flow. 556 

 557 

 558 

3.2.2. Results 559 

Figure 8a shows the RMSE of soil moisture simulation of a second soil layer (i.e. 10-560 

20cm soil depth) in all 8 experiments (the same conclusion described below can be 561 

obtained by analyzing all of shallow soil layers). When Parflow explicitly solves the 562 

topography-driven surface flow, data assimilation substantially reduces RMSE of the soil 563 

moisture simulation (green bars in Figure 8a). The OF_DA_obs361 experiment has the 564 

smallest RMSE so that a denser observing network is beneficial to estimate soil moisture. 565 

Figure 8b shows the RMSE of the estimation of saturated surface hydraulic conductivity 566 
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in all 8 experiments. Data assimilation also reduces the uncertainty in model’s parameters 567 

(green bars in Figure 8b). However, the OF_DA_obs361 experiment has larger RMSE 568 

than the other DA experiments. This is because the adjustment of hydraulic conductivity 569 

in the OF_DA_obs361 experiment greatly mitigates not only the errors induced by 570 

uncertainty in hydraulic conductivity but those induced by uncertainty in rainfall rate. In 571 

the OF configuration, there are two sources of errors, rainfall rate and hydraulic 572 

conductivity. However, data assimilation can adjust only hydraulic conductivity in this 573 

study. Although it is expected that the adjustment of hydraulic conductivity mainly 574 

mitigates the errors of simulated volumetric soil moisture induced by uncertainty in 575 

hydraulic conductivity, it also greatly mitigates those induced by uncertainty in rainfall 576 

rate by adjusting the parameter in the incorrect direction when the number of observations 577 

is large. Therefore, the assimilation of a large number of observations degrades the 578 

estimation of saturated hydraulic conductivity despite the improvement of the soil 579 

moisture simulation. 580 

 581 

The noOF_NoDA experiment has larger RMSE than the OF_NoDA experiment due to 582 

the negligence of the topography-driven surface flow. In the noOF configuration, data 583 

assimilation also improves the soil moisture simulation (red bars in Figure 8a). The 584 
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noOF_DA_obs361 experiment outperforms the OF_NoDA experiment so that data 585 

assimilation with a dense observing network can compensate the negative impact of 586 

neglecting the topography-driven surface flow. Although data assimilation positively 587 

impacts the parameter estimation, the denser observing network cannot reduce RMSE of 588 

hydraulic conductivity estimation (red bars in Figure 8b). The negative impact of the 589 

dense observations in the noOF_DA_obs361 experiment on the parameter estimation is 590 

larger than in the OF_DA_obs361 experiment. In addition to rainfall rate and hydraulic 591 

conductivity, the imperfect model physics (i.e., no topography-driven surface flow) is the 592 

source of error in the noOF configuration. The assimilation of a large number of 593 

observations degrades the estimation of saturated hydraulic conductivity because it 594 

greatly mitigates the impact of all systematic errors which comes from three different 595 

sources only by adjusting hydraulic conductivity.  596 

 597 

Figure 9 shows the difference of RMSE of the soil moisture simulation between the DA 598 

experiments and the OF_NoDA experiment. In the DA configuration, the improvement 599 

of the soil moisture estimation can be found in a large area even if there is a single 600 

observation in the center of the domain (Figure 9a). Figure 9b shows that the increase of 601 

the number of observations substantially improves the soil moisture simulation in the 602 
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region which is affected by topography-driven surface flow (see also Figure 6c). However, 603 

the skill to simulate soil moisture is severely degraded in the lower-left corner of the 604 

domain, which causes the stalled improvement from the OF_DA_obs1 experiment to the 605 

OF_DA_obs9 experiment shown in Figure 8a. Figure 9c shows that although the far 606 

denser observing network can slightly mitigate this degradation, increasing the number 607 

of observations cannot efficiently solve this issue. This degradation is caused by the 608 

bifurcation of ensemble members at the edge of the area where topography-driven surface 609 

flow reaches (Figure S7). Figure 10 shows KLD in the OF_NoDA and noOF_NoDA 610 

experiments. Figure 10a clearly shows that the ensemble simulation of volumetric soil 611 

moisture generates the strong non-Gaussianity at the edge of the area where topography-612 

driven surface flow reaches, which harms the efficiency of the ETKF. This finding is 613 

consistent to what I found in the previous experiment in section 3.1. 614 

 615 

In the noOF configuration, there are large errors in the area around 500<=x, y <=1500 616 

since the increase of soil moisture in this area is caused by the topography-driven surface 617 

flow which is neglected in the noOF configuration. Figures 9d and 9e show that the sparse 618 

observations cannot completely remove this degradation caused by imperfect model 619 

physics. Figure 9f shows that the noOF_DA_obs361 can outperform the OF_NoDA 620 
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experiment in exchange for the degradation of the parameter estimation as I found in 621 

Figure 8. The unstable behavior of the ETKF found in the OF configuration does not 622 

occur when the topography-driven surface flow is neglected since the ensemble 623 

simulation does not generate the non-Gaussian background distribution (Figure 10b). 624 

Although ETKF can significantly improve the simulation skill of the hyperresolution land 625 

model in many cases, I found its limitation when it is applied to the problems with the 626 

topography-driven surface lateral flows. Figure 10 clearly indicates that this limitation 627 

appears only if lateral water flows are explicitly considered. 628 

 629 

 630 

 631 

4. Discussion 632 

In this study, I revealed that the hyperresolution integrated surface-subsurface 633 

hydrological model gives the unique opportunity to effectively use soil moisture 634 

observations to improve the soil moisture simulation in terms of a horizontal propagation 635 

of observation’s information in a model space. I found that the explicit calculation of the 636 

topography-driven surface flow has an important role in propagating the information of 637 

soil moisture observation horizontally by data assimilation even if there is considerable 638 
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heterogeneity of meteorological forcing. It is possible that the soil moisture observations 639 

in the area where it does not heavily rain can improve the soil moisture simulation in the 640 

severe rainfall area.  641 

 642 

This potential cannot be brought out in the conventional 1-D LSM where sub-grid scale 643 

surface runoff is parameterized and the surface flows in one grid do not move to the 644 

adjacent grids. I found that neglecting the topography-driven surface flow causes 645 

significant bias in the soil moisture simulation and this bias cannot be completely 646 

mitigated by data assimilation especially in the case of a sparse observing network. 647 

However, I found that even if the model uses imperfect physics which neglects the 648 

interaction between topography-driven surface lateral flows and subsurface soil moisture, 649 

assimilating soil moisture observations into the model’s three-dimensional state and 650 

parameter space can improve the skill to estimate soil moisture and hydraulic conductivity. 651 

This finding implies that the conventional 1-D LSM with full 3-D data assimilation may 652 

be a computationally cheap and reasonable choice in some cases although many land data 653 

assimilation systems with the conventional 1-D LSM currently update state variables only 654 

in a single model’s horizontal grid which is identical to the location of the observation. 655 

 656 
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The conventional ensemble data assimilation (i.e. ETKF) severely suffers from the non-657 

Gaussian background error PDFs caused by the strongly nonlinear dynamics of the 658 

topography-driven surface flow although it has been widely used by previous studies (e.g., 659 

Camporese et al. (2009); Camporese et al. (2010); Ridler et al. (2014); Zhang et al. (2015); 660 

Kurtz et al. (2016); Zhang et al. (2018)). The efficiency of ETKF to propagate the 661 

information of observations horizontally in the model space is limited in the edge of the 662 

area where the topography-driven surface flow reaches. Please note that the low 663 

representativeness of the soil moisture observations in the case of the HIGH_K reference 664 

shown in section 3.1 is due to the core assumption of the Kalman filter that the error PDFs 665 

follow the Gaussian distribution so that the increase of the ensemble size cannot solve 666 

this issue. I implemented the data assimilation experiment in the case of the HIGH_K 667 

reference with an ensemble size of 500, which is 10 times larger than the original 668 

experiments shown in section 3.1, and found no significant improvement of the soil 669 

moisture simulation (not shown). Some studies revealed that volumetric soil moisture 670 

distributions follow the Gaussian distribution better than pressure head so that they 671 

recommend to update soil moisture as a state variable (e.g., Zhang et al. (2018)). However, 672 

in this study, I found that volumetric soil moisture distributions have bimodal structure 673 
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and do not follow the Gaussian distribution. The limitation of ensemble Kalman filters 674 

found in this study does not depend on the updated state variables. 675 

 676 

The spatially dense soil moisture observations are needed to efficiently constrain state 677 

variables at the edge of surface flows. High resolution soil moisture remote sensing based 678 

on satellite active and passive combined microwave observations at the 1 km spatial 679 

resolution (e.g., He et al. 2018) and the assimilation of those data (Lievens et al. 2017) 680 

may be important in the era of the hyperresolution land modeling.  High resolution 681 

observations of surface inundated water from satellite imagery with a spatial resolution 682 

finer than 100 m (e.g., Sakamoto et al. 2007; Arnesen et al. 2013) may also be useful. 683 

However, the numerical experiment in section 3.2 implies that the dense observing 684 

network of surface soil moisture cannot completely remove the negative impact of the 685 

non-Gaussian background PDF. 686 

 687 

Since there is a nonlinear relationship between observed and unobserved variables 688 

sampled by an ensemble, a localization method, which spatially restricts the impact of 689 

assimilating observations, is crucially needed for real-world applications. In this study, 690 

assimilating observation impacted everywhere in the computational domain. If the 691 
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localization method is applied, assimilating observation influences state variables of the 692 

model grids which are near to the location of assimilated observations. The results of this 693 

study imply that the optimal localization radius strongly depends on the model parameter 694 

(i.e. saturated hydraulic conductivity). Rasmussen et al. (2015) successfully applied the 695 

adaptive localization method (Anderson 2007; Bishop and Hodyss 2009) to the data 696 

assimilation of groundwater observations into a hydrological model. It is appropriate to 697 

adaptively determine the localization radius considering the lack of prior knowledge of 698 

how soil moisture simulated by an ensemble is horizontally correlated. 699 

 700 

Reducing the uncertainty in rainfall positively impacts the efficiency of data assimilation 701 

since the bifurcation of simulated soil moisture found in Figure 5c is originally induced 702 

by the uncertainty in rainfall. Although assimilating land hydrological observations to 703 

improve the rainfall input has been intensively investigated (e.g., Sawada et al. 2018; 704 

Herrnegger et al. 2015; Crow et al. 2011; Vrugt et al. 2008), it has yet to be applied to 705 

hyperresolution land models. Please note that the parameters of the lognormal distribution 706 

to model the uncertainty in rainfall were specified to make the rainfall PDF similar to the 707 

Gaussian distribution. I chose the lognormal distribution in order not to generate negative 708 

rainfall values and I intended not to introduce non-Gaussianity into the external forcing. 709 
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The rainfall input which follows the Gaussian PDF was transformed into the non-710 

Gaussian PDF of the background error by the strongly nonlinear dynamics of the 711 

topography-driven surface flow. 712 

 713 

To explicitly consider non-Gaussianity and non-linear relationship between observed and 714 

unobserved variables induced by the topography-driven surface flow, the particle filters 715 

may be useful. The particle filter can represent a probability distribution (including non-716 

Gaussian distributions) directly by an ensemble. Particle filters have been intensively 717 

applied to conventional 1-D LSMs (e.g., Sawada et al. 2015; Qin et al. 2009) and lumped 718 

hydrological models (e.g., Yan and Moradkhani 2016; Vrugt et al. 2013). Although 719 

particle filtering in a high dimensional system suffers from the “curse of dimensionality” 720 

(e.g., Snyder et al. 2008), some studies developed the methodology to improve the 721 

efficiency of particle filtering (e.g., van Leeuwen 2009; Poterjoy et al. 2019). The 722 

applicability of particle filtering to 3-D hyperresolution land models should be assessed 723 

in the future. 724 

 725 

Since the synthetic numerical experiments in this paper adopted the simple and 726 

minimalistic setting, the findings of this paper may be exaggerated. There are no river 727 
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channels in the synthetic experiment so that the skill to simulate river water level and 728 

discharge cannot be discussed, which is the major limitation of this study. The simple 729 

representation of soil properties is also a limitation of this study. In future work, the 730 

contributions of the topography-driven surface runoff process to the data assimilation of 731 

hydrological observations should be quantified in real-world applications. In addition, in 732 

the virtual experiment of this paper, I neglected some of the important land processes such 733 

as transpiration, canopy interception, snow, and frozen soil. These processes affect the 734 

source term of equation (1) in hyper-resolution land models (e.g., Shrestha et al. 2014). 735 

Since the inclusion of the neglected processes do not change the structure of the original 736 

ParFlow, the findings of this study can be robust to the models which include these 737 

processes. Although they are generally not primary factors in the propagation of overland 738 

flows generated by extreme rainfall, which has a shorter timescale than the neglected 739 

processes, those processes should be considered in the future. 740 

 741 

The other limitation of this study is that I could not thoroughly evaluate the skill of the 742 

ensemble data assimilation to quantify the uncertainty of its prediction. Following 743 

Abbazadeh et al. (2019), I calculated the 95% exceedance ratio and found that the 744 

ensemble forecast was systematically overconfident (not shown). In the synthetic 745 
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experiments of this study, the number of rainfall events was small, and the timing and 746 

magnitude of rainfall were not diversified. Due to this limited amount of data, it is difficult 747 

to deeply discuss the accuracy of the quantified uncertainty by data assimilation. While 748 

the skill of lumped hydrological models was often evaluated by the probabilistic 749 

performance measures such as the 95% exceedance ratio (e.g., Abbazadeh et al. (2019)), 750 

the uncertainty quantification of the simulation of hyper-resolution land models is in its 751 

infancy. How surface lateral flows affect the accuracy of the uncertainty quantification by 752 

data assimilation should be investigated using more realistic data. 753 

 754 

 755 

5. Conclusions 756 

The simplified synthetic experiments of this study indicate that topography-driven lateral 757 

surface flows induced by heavy rainfalls do matter for data assimilation of hydrological 758 

observations into hyperresolution land models. Even if there is extreme heterogeneity of 759 

rainfall, the information of soil moisture observations can be propagated horizontally in 760 

the model space and the soil moisture simulation can be improved by the ensemble 761 

Kalman filter. However, the nonlinear dynamics of the topography-driven surface flow 762 

induces the non-Gaussianity of the model error, which harms the efficiency of data 763 
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assimilation of soil moisture observations. It is difficult to efficiently constrain model 764 

states at the edge of the area where the topography-driven surface flow reaches by linear-765 

Gaussian filters, which brings the new challenge in land data assimilation for 766 

hyperresolution land models. Future work will focus on the real-world applications using 767 

intense in-situ soil moisture observation networks and/or high-resolution satellite soil 768 

moisture observations. 769 
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 1095 

 1096 

Table 1. Configuration of the data assimilation experiments in section 3.1. 1097 

  
hydraulic conductivity 

[m/h] 

observation's location 

[m] 

LOW_K-UP_O 0.005 2500 

LOW_K-DOWN_O 0.005 1500 

HIGH_K-UP_O 0.02 2500 

HIGH_K-DOWN_O 0.02 1500 

 1098 

Table 2. Configuration of the data assimilation experiments in section 3.2 1099 

  overland flows observing network 

noOF_NoDA none no data assimilation 

noOF_DA_obs1 none Figure 7a 

noOF_DA_obs9 none Figure 7b 

noOF_DA_obs361 none Figure 7c 

OF_NoDA simulated no data assimilation 

OF_DA_obs1 simulated Figure 7a 

OF_DA_obs9 simulated Figure 7b 

OF_DA_obs361 simulated Figure 7c 

 1100 

 1101 

 1102 
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 1104 

 1105 

Figure 1. Distributions of volumetric soil moisture simulated by the synthetic reference runs. (a) The 1106 

distribution of volumetric soil moisture [m3/m3] simulated by the LOW_K synthetic reference run at t = 0h. 1107 

The schematic of the configuration of the synthetic reference runs is also shown (see also section 3). (b) same 1108 

as (a) but at t = 130h. (c,d) same as (a,b) but for the HIGH_K synthetic reference run. 1109 
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 1111 

Figure 2. The improvement rates of the (a) LOW_K-UP_O, (b) LOW_K-DOWN_O, (c) HIGH_K_UP_O, 1112 

(d) HIGH_K-DOWN_O experiments (see Table 1 and section 3). Black arrows show the locations of the soil 1113 

moisture observations in each experiment. 1114 
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 1116 

Figure 3. (a) The difference of time-mean RMSEs between the LOW_K-UP_O and LOW_K-DOWN_O 1117 

experiments (see Table 1 and section 3). Red (blue) color indicates that the observations in the upper (lower) 1118 

part of the slope reduce time-mean RMSE by data assimilation better than those in the lower (upper) part of 1119 

the slope (see also arrows which are the locations of the observations). (b) same as (a) but for the difference 1120 

between the HIGH_K-UP_O and HIGH_K-DOWN_O experiments. 1121 
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 1123 

Figure 4. The Kullback-Leibler divergence of the NoDA experiment generated by (a) the LOW_K reference 1124 

and (b) the HIGH_K reference at t = 130h (see also Figure 1b and 1d). 1125 
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 1127 

Figure 5. (a) The histogram (blue bars) of the volumetric soil moisture simulated by the NoDA experiment 1128 

(see section 3) with the LOW_K reference at x=1500m, z=0.5m, and t=130h (see also Figure 4). Red line 1129 

shows the Gaussian distribution with the mean and variance sampled by the ensemble. (b) same as (a) but at 1130 

x=2500m, z=0.5m, and t=130h. (c) same as (a) but for the HIGH_K reference. (d) same as (c) but at x=2500m, 1131 

z=0.5m, and t=130h. 1132 
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 1142 

 1143 

Figure 8. Time-mean RMSEs of the estimation of (a) soil moisture and (b) hydraulic conductivity. Red and 1144 

green bars are results of the noOF and OF configuration, respectively (see section 3.2.1 and Table 2). 1145 
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 1150 

 1151 

Figure 10. The Kullback-Leibler divergence of ensemble members generated by the (a) OF_NoDA and (b) 1152 

noOF_NoDA experiments at t = 4 [h]. 1153 
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