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13 Abstract

14 It is expected that hyperresolution land modeling substantially innovates the simulation
15  of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution
16  land models against conventional one-dimensional land surface models is that
17  hyperresolution land models can explicitly simulate lateral water flows. Despite many
18  efforts on data assimilation of hydrological observations into those hyperresolution land
19  models, how surface water flows driven by local topography matter for data assimilation
20  of soil moisture observations has not been fully clarified. Here I perform two minimalist
21  synthetic experiments where soil moisture observations are assimilated into an integrated
22 surface-groundwater land model by an ensemble Kalman filter. I discuss how differently
23  the ensemble Kalman filter works when surface lateral flows are switched on and off. A
24 horizontal background error covariance provided by overland flows is important to adjust
25  theunobserved state variables (pressure head and soil moisture) and parameters (saturated
26  hydraulic conductivity). However, the non-Gaussianity of the background error provided
27 by the nonlinearity of a topography-driven surface flow harms the performance of data
28  assimilation. It is difficult to efficiently constrain model states at the edge of the area

29  where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the
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new challenge in land data assimilation for hyperresolution land models. This study

highlights the importance of surface lateral flows in hydrological data assimilation.

1. Introduction

Hyperresolution land modeling is expected to improve the simulation of terrestrial water,

energy, and carbon cycles, which is crucially important for meteorological, hydrological

and ecological applications (see Wood et al. (2011) for a comprehensive review). While

conventional land surface models (LSMs) assume that lateral water flows are negligible

at the coarse resolution (>25km) and solve vertical one-dimensional Richards equation

for the soil moisture simulation (e.g., Sellers et al. 1996; Lawrence et al. 2011), currently

proposed hyperresolution land models, which can be applied at a finer resolution (<1km),

explicitly consider surface and subsurface lateral water flows (e.g., Maxwell and Miller

2005; Tian et al. 2012; Shrestha et al. 2014; Niu et al. 2014). The fine horizontal resolution

can resolve slopes, which are drivers of a lateral transport of water, and realize the fully

integrated surface-groundwater modeling. Previous works indicated that a lateral

transport of water strongly controls latent heat flux and the partitioning of

evapotranspiration into base soil evaporation and plant transpiration (e.g., Maxwell and
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Condon 2016; Ji et al. 2017; Fang et al. 2017). This effect of a lateral transport of water

on land-atmosphere interactions has been recognized (e.g., Williams and Maxwell 2011;

Keune et al. 2016).

Data assimilation has contributed to improving the performance of LSMs by fusing

simulation and observation. The grand challenge of land data assimilation is to improve

the simulation of unobservable variables using observations by propagating observations’

information into model’s high dimensional state and parameter space. In previous works

on the conventional 1-D LSMs, many land data assimilation systems (LDASs) have been

proposed to accurately estimate model’s state and parameter variables, which cannot be

directly observed, by assimilating satellite and in-situ observations. For example, the

optimization of LSM’s unknown parameters (e.g., hydraulic conductivity) has been

implemented by assimilating remotely sensed microwave observations (e.g., Yang et al.

2007; Yang et al. 2009; Bandara et al. 2014; Bandara et al. 2015; Sawada and Koike 2014;

Han et al. 2014). Kumar et al. (2009) focused on the correlation between surface and root-

zone soil moistures to examine the potential of assimilating surface soil moisture

observations to estimate root-zone soil moisture. Sawada et al. (2015) successfully

improved the simulation of root-zone soil moisture by assimilating microwave brightness

Hydrology and
Earth System
Sciences

Discussions



https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
(© Author(s) 2020. CC BY 4.0 License.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

temperature observations which include the information of vegetation water content.

Gravity Recovery and Climate Experiment total water storage observation has been

intensively used to improve the simulation of groundwater and soil moisture (e.g., Li et

al. 2012; Houborg et al. 2012). Improving the simulation of state variables such as soil

moisture and biomass by LDASs has contributed to accurately estimating fluxes such as

evapotranspiration (e.g. Martens et al. 2017) and CO: flux (e.g., Verbeeck et al. 2011).

However, in most of the studies on the conventional 1-D LDASs, observations impacted

state variables and parameters only in a single model’s horizontal grid which is identical

to the location of the observation. The assumption that the water flows are restricted to

vertical direction in LSMs makes it difficult to propagate observation’s information

horizontally. It limits the potential of land data assimilation to fully use land hydrological

observations.

The hyperresolution land models, which explicitly solve surface and subsurface lateral

flows, provide a unique opportunity to examine the potential of land data assimilation to

propagate observation’s information horizontally in a model space and efficiently use land

hydrological observations. Previous works successfully applied Ensemble Kalman Filters

(EnKF) to 3-D Richards’ equation-based integrated surface-groundwater models. For
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example, Camporese et al. (2009) and Camporese et al. (2010) successfully assimilated

synthetic observations of surface pressure head and streamflow into the Catchment

Hydrology (CATHY). Ridler et al. (2014) successfully assimilated Soil Moisture and

Ocean Salinity satellite-observed surface soil moisture into the MIKE SHE distributed

hydrological model (see also Zhang et al. (2015)). Kurtz et al. (2016) coupled the Parallel

Data Assimilation Framework (PDAF) (Nerger and Hiller 2013) with the Terrestrial

System Modelling Framework (TerrSysMP) (Shrestha et al. 2014) and successfully

estimate the spatial distribution of soil moisture and saturated hydraulic conductivity in

the synthetic experiment (see also Zhang et al. (2018)). In addition, Kurtz et al. (2016)

indicated that their EnKF approach is computationally efficient in high-performance

computers. Those studies have significantly contributed to fully assimilating the new

high-resolution soil moisture observations such as Sentinel-1 (e.g., Paroscia et al. 2013)

Although the data assimilation of hydrological observations into hyperresolution land

models has been successfully implemented in the synthetic experiments, it is unclear how

topography-driven surface lateral water flows matter for data assimilation of soil moisture

observations. Previous studies on data assimilation with high resolution models mainly

focused on assimilating groundwater observations (e.g., Ait-El-Fquih et al. 2016;
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Rasmussen et al. 2015; Hendricks-Franssen et al. 2008). There are some applications

which focused on the observation of soil moisture and pressure head in shallow

unsaturated soil layers. However, in those studies, topography-driven surface flow has

not been considered in the experiment (Kurtz et al. 2016) or the role of them in

assimilating observations into the hyperresolution land models has not been quantitatively

discussed (Camporese et al. 2010; Camporese et al. 2009). This study aims at clarifying

if surface lateral flows matter for data assimilation of soil moisture observations into

hyperresolution land models by a minimalist numerical experiment.

2. Methods

2.1. Model

ParFlow is an open source platform which realizes fully integrated surface-groundwater

flow modeling (Kollet and Maxwell 2006; Maxwell et al. 2015). This model can be

efficiently parallelized in high performance computers and has been widely used as a core

hydrological module in hyperresolution land models (e.g., Maxwell and Kollet 2008;

Maxwell and Condon 2016; Fang et al. 2017; Kurtz et al. 2016; Maxwell et al. 2011,

Williams and Maxwell 2011; Shrestha et al. 2014). Since I used this widely adopted solver
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as is and added nothing new to the model physics, I described the method of ParFlow to
simulate integrated surface-subsurface water flows briefly and omitted the details of
numerical methods. The complete description of ParFlow can be found in Kollet and

Maxwell (2006), Maxwell et al. (2015) and references therein.

In the subsurface, ParFlow solves the variably saturated Richards equation in three

dimensions.

oh a h
SsSw(h) 2+ ¢Sy (W LB =7 q+q, (1)

q = —K;x)k,.(h)[V(h + 2)cosb, + sinb,] (2)

In equation (1), 4 is the pressure head [L]; z is the elevation with the z axis specified as
upward [L]; Ss is the specific storage [L']; Sy, is the relative saturation; ¢ is the
porosity [-]; g, is a source/sink term. Equation (2) describes the flux q

[LT"'] by Darcy’s law, and Kj is the saturated hydraulic conductivity tensor [LT™']; k,
is the relative permeability [-]; 6 is the local angle of topographic slope (see Maxwell et
al. 2015). In this paper, the saturated hydraulic conductivity is assumed to be isotropic

and a function of z:

K= Ks(z) = Ks,surfaceexp (_f(zsurface - Z)) 3)

Hydrology and
Earth System
Sciences

Discussions



https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
(© Author(s) 2020. CC BY 4.0 License.

137
138
139

140

141

142

143
144
145
146
147
148
149
150
151
152
153

154

where K yrrace 1S the saturated hydraulic conductivity at the surface soil, and Zgyrface
is the elevation of the soil surface. The saturated hydraulic conductivity decreases
exponentially as the soil depth increases (Beven 1982). A van Genuchten relationship

(van Genuchten 1980) is used for the relative saturation and permeability functions.

Ssa _STES
Sw(h) = - — + Sres 4)
(1+(anym) )
(a2
ny\1 7
kr(h) — (1+(ah) )(1_1) (5)

(1+(am)™) 2

where a [L-1] and n [-] are soil parameters, S, is the relative saturated water content

and S, is the relative residual saturation.

Overland flow is solved by the two-dimensional kinematic wave equation. The dynamics
of the surface ponding depth, h [L], can be described by:

k- [—K,(2)k, (h) - V(h + 2)] = 222 — v |10, 0w, + ¢, (4)

In equation (4), Kk is the unit vector in the vertical and ||k, 0| indicates the greater value
of the two quantities following the notation of Maxwell et al. (2015). This formulation
results in the overland flow equation being represented as a boundary condition to the
variably saturated Richards equation (Kollet and Maxwell 2006). If h < 0, equation (4)

describes that vertical fluxes across the land surface is equal to the source/sink term g,

(i.e., rainfall and evapotranspiration). If h > 0, the terms on the right-hand side of equation
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(4), which indicate water fluxes routed according to surface topography, are active. vy,
is the two-dimensional depth-averaged water flow velocity [LT™'] and estimated by the
Manning’s law:

S 2 S 2
Vo = (L2150 = (L2285 (5)

M nm
where S, and Sg, are the friction slopes [-] for the x- and y-direction, respectively;
ny is the Manning’s coefficient [TL""]. In the kinematic wave approximation, the
friction slopes are set to the bed slopes. The methodology of discretization and numerical

method to solve equations (1-5) can be found in Kollet and Maxwell (2006).

2.2. Data Assimilation

In this paper, the ensemble Kalman filter (EnKF) was applied to assimilate soil moisture
observations into ParFlow. The EnKF has widely been applied to hyper-resolution land
models (e.g., Camporese et al. (2009); Camporese et al. (2010); Ridler et al. (2014);
Zhang et al. (2015); Kurtz et al. (2016); Zhang et al. (2018)). I examined if surface lateral
flows matter for data assimilation of soil moisture observations into hyperresolution land

models using this widely adopted data assimilation method.
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The Parflow model can be formulated as a discrete state-space dynamic system:
x(t+1) = f(x(0), 0,u(®)) + q(t) ®)

where x(t) is the state variables (i.e. pressure head), @ is the time-invariant model
parameters (i.e. saturated hydraulic conductivity), u(t) is the external forcing (i.e.,
rainfall and evapotranspiration), and q(t) is the noise process which represents the
model error. In data assimilation, it is useful to formulate an observation process as
follows:

¥ () =H(x(®) +7(t) ©)

where y7(t) is the simulated observation, # is the observation operator which maps
the model’s state variables into the observable variables, and r(t) is the noise process
which represents the observation error. The purpose of EnKF (and any other data
assimilation methods) is to find the optimal state variables x(t) based on the simulation

y7(t) and observation (defined as y°) considering their errors (g(t) and r(t))

The general description of the Kalman filter is the following:
2/ () = M[x*(¢ — 1] (6)
x4() = 2/ (6) + K[y° = H & ()] (D)

K= P/ HT(HPIHT + R)™! (8)
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191  P*=(I—-KH)P (9)

192 I follow the notation of Houtekamer and Zhang (2016). Superscripts f and a are forecast
193  and analysis, respectively. In equation (6), a forecast model M (ParFlow in this study)
194  isused to obtain a prior estimate at time t, x/(t), from the estimation at the previous time
195  x%(t — 1).In equation (7), a prior estimate x/(t) is updated to the analysis state, x(t),
196  using new observations y°. The Kalman gain matrix K, calculated by equation (8), gives
197  an appropriate weight for the observations with an error covariance matrix R, and the
198  prior with an error covariance matrix P/. P® is an updated analysis error covariance.
199  To calculate K, the observation operator H is needed to map from model space to
200  observation space. It should be noted that the equations (6-9) give an optimal estimation
201  only when the model and observation errors follow the Gaussian distribution. When the
202  probabilistic distribution of the error in either model or observation has a non-Gaussian
203  structure, results of the Kalman filter are suboptimal. This point is important to interpret
204  the results of this study.

205

206  EnKF is the Monte Carlo implementation of equations (6-9). To compute the Kalman gain
207  matrix, K, ensemble approximations of P/HT and HP/HT can be given by:

208 PIHT = —¥k, (x] — x7) (#tx] — 72T (10)
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) .
HPIHT ==k (Hx] - HxT) (tx] - FHxP)T (1)

where x{ is the ith member of a k-member ensemble prior and x/ = 12?:1 x{ and

k

rrewi 1
Hxl = ;Zﬁ‘:lﬂ-{xf.

Once x% =YK, x% (x? is the ith member of a k-member ensemble analysis) and P% =

1

Y K (x% —x%) (x* —x9T are computed by equations (6-11), there are many

choices of an analysis ensemble. Although equations (6-11) can calculate the mean and
variance of the ensemble members, they do not tell how to adjust the state of the ensemble
members in order to realize the estimated mean and variance. There are many proposed
flavors of EnKF and one of the differences among them is the method to choose the
analysis x{. In this paper, the Ensemble Transform Kalman Filter (ETKF; Bishop et al.
2001; Hunt et al. 2007) was used to transport forecast ensembles to analysis ensembles.
ETKF has been used for hyperresolution land data assimilation (e.g., Kurtz et al. 2016).
Please refer to Hunt et al. (2007) for the complete description of the ETKF and its
localized version, the Local Ensemble Transform Kalman Filter (LETKF). The open

source available at https://github.com/takemasa-miyoshi/letkf was used in this study as

the ETKF code library.
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In many ensemble Kalman filter systems, the ensemble spread, P¢, tends to become too
underdispersive to stably perform data assimilation cycles without any ensemble inflation
methods (Houtekamer and Zhang, 2016). To overcome this limitation, P® is arbitrarily
inflated after data assimilation. In this paper, the relaxation to prior perturbation method
(RTPP) of Zhang et al. (2004) was used to maintain an appropriate ensemble spread. In
the RTPP, the computed analysis perturbations are relaxed back to the forecast
perturbations:

ey — 2= (1= )¢ —x) +a(x/ —x), 0<a<1 (12)

where a was set to 0.975 in this study. If a = 1, the analysis spread is identical to the
background spread. Many studies show that the ensemble inflation works well when o
remains fairly close to 1 (see also the comprehensive review by Houtekamer and Zhang

2016).

In the data assimilation experiments, I adjusted pressure head by data assimilation so that
x/ is pressure head. Since the surface saturated hydraulic conductivity was also adjusted,
x' includes log-transformed K surface - 1 assimilated volumetric soil moisture
observations so that y/ and y° are simulated and observed volumetric soil moisture,

respectively. The van Genuchten relationship converts the adjusted state variables x/ to
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the observable variables y/ and can be recognized as an observation operator H .
However, since volumetric soil moisture y” has already been calculated by Parflow, I did

not need the van Genuchten relationship in data assimilation.

2.3. Kullback-Leibler divergence

To evaluate the non-Gaussianity of the background error sampled by an ensemble, I used
the Kullback-Leibler divergence (KLD) (Kullback and Leibler 1951):

Diu(p.q) = Zip(Dlog &5 (13)

where Dy, (p,q) isthe KLD between two probabilistic distribution functions (PDFs), p
and q. If two PDFs are equal for all i, Dk, (p,q) = 0. A large value for Dy, (p,q)
indicates that the two PDFs, p and q, substantially differ from each other. Therefore,
the KLD can be used as an index to evaluate the closeness of two PDFs. In this study, I
compared the PDF of the ensemble simulation (p in equation (13)) with the Gaussian PDF
which has the mean and variance of the ensembles (q in equation (13)). A large value for
Dk (p,q) indicates the state variables simulated by ensembles do not follow the

Gaussian PDF. It should be noted that the KLD is not symmetric (Dg; (p, q) # Dg.(q,p)).

The KLD has been used to quantitatively evaluate the Gaussianity of the sampled

15

Hydrology and
Earth System
Sciences

Discussions



https://doi.org/10.5194/hess-2020-106 Hydrology and
Preprint. Discussion started: 30 March 2020 Earth System
(© Author(s) 2020. CC BY 4.0 License. Sciences

Discussions
By

263  background error in the studies on data assimilation (e.g., Kondo and Miyoshi 2019; Duc
264  and Saito 2018).

265

266

267 3. Synthetic experiments

268 In this study, I performed two synthetic experiments. In the synthetic experiments, I
269  generated the synthetic truth of the state variables by driving ParFlow with the specified
270  parameters and input data. Then the synthetic observations were generated by adding the
271  Gaussian white noise to this synthetic truth. The performance of data assimilation was
272  evaluated by comparing the estimated state and parameter values by ETKF with the
273  synthetic truth. This synthetic experiment has been recognized as an important research
274  method to analyze how data assimilation works (e.g., Moradkhani et al. 2005; Camporese
275  etal. 2009; Vrugt et al. 2013; Kurtz et al. (2016); Sawada et al. 2018)

276

277

278  3.1. Simple 2-D slope with homogeneous hydraulic conductivity

279  3.1.1. Experiment Design

16
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The synthetic experiment was implemented to examine how topography-driven surface
lateral flows contribute to efficiently propagating observation’s information horizontally
in the data assimilation of soil moisture observation. Two synthetic reference runs were
created by Parflow. The 2-D domain has a horizontal extension of 4000m and a vertical
extension of Sm. The domain of the virtual slope was horizontally discretized into 40 grid
cells with a size of 100m and vertically discretized into 50 grid cells with a size of 0.10m.
The domain has a 25% slope. In two synthetic reference runs, it heavily rains only in the
upper half of the slope (2000m<x<4000m). Although this rainfall distribution is
unrealistic, the effect of surface lateral flows on data assimilation can clearly be discussed
in this simplified problem setting. More realistic rainfall distribution will be used in the
next synthetic experiment (see section 3.2). A constant rainfall rate of 50mm/h was
applied for 3 hours and then the period with no rainfall and evaporation of 0.075mm/h
lasted for 117 hours. This 120-hour rain/no rain cycle was repeatedly applied to the
domain. There is no rainfall in the lower half of the slope (0m<x<2000m). The
configurations described above were schematically shown in Figure 1a. The parameters
of the van Genuchten relationship, alpha and n, were set to 1.5 [m™!] and 1.75, respectively.
Those values are in the reasonable range estimated by the published literature (e.g.,

Ghanbarian-Alavijeh et al. 2010). The porosity, ¢ in equation (1), was set to 0.40. The
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Manning’s coefficient, n, in equation (5), was set to 5.52 X 107® [m™*h]. These
clayey soil properties described above are applied to the whole domain. The groundwater
table was located at z=3m and the hydrostatic pressure gradient was assumed for the

initial pressure heads in the unsaturated soil layers.

The difference between two synthetic reference runs is the value of saturated hydraulic
conductivity. The surface saturated hydraulic conductivity, Kgurface in €quation (3),
was set to 0.005 [m/h] in one reference, and 0.02 [m/h] in the other. These surface
saturated hydraulic conductivities described above are applied to the whole domain.
Figure 1 shows the difference of the response to heavy rainfall between the two synthetic
reference runs. In the case of the low saturated hydraulic conductivity (hereafter called
the LOW_K reference), larger surface lateral flows are generated than the case of the high
saturated hydraulic conductivity (hereafter called the HIGH K reference). In the LOW_K
reference, the topography-driven surface lateral flows reach the left edge of the domain
(Figure 1b). In the HIGH K reference, supplied water moves vertically rather than
horizontally and the topography-driven surface flow reaches around x = 1000~1500m

(Figure 1d).
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For the data assimilation experiment, an ensemble of 50 realizations was generated. Each
ensemble member has different saturated hydraulic conductivity and rainfall rate.
Lognormal multiplicative noise was added to surface saturated hydraulic conductivity
and rainfall rate of the synthetic reference runs. This specification of uncertainty in
rainfall was also adopted in Crow et al. (2011). The two parameters of the lognormal
distribution, commonly called p and o, were set to 0 and 0.15, respectively. The initial
groundwater depth of each ensemble member was drawn from the uniform distribution
from 2.0m to 3.5m. The hydrostatic pressure gradient was assumed for the initial pressure

heads in the unsaturated soil layers.

The virtual hourly observations were generated by adding the Gaussian white noise whose
mean is zero to the volumetric soil moisture simulated by the synthetic reference runs.
The observation error (the standard deviation of the added Gaussian white noise) was set
to 0.05 m*/m>. It was assumed that the volumetric soil moistures can be observed in every
model’s soil layer from surface to the depth of 1m at the specific location. These soil
moisture observations can be obtained in the in-situ observation sites (e.g., Dorigo et al.,
2017). In the section 3.2, I will assume that only surface soil moisture observation can be

accessed, which is more realistic since satellite sensors can observe only surface soil
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moisture. [ assumed that the small part of the domain can be observed. The two scenarios

of the observation’s location are provided. In the first scenario (hereafter called the UP_O

scenario), the volumetric soil moisture at the upper part of the slope (x = 2500m) was

observed. In the UP_O scenario, I could observe the volumetric soil moisture in the upper

part of the slope where it heavily rains and tried to infer the soil moisture in the lower part

of the slope where it does not rain by propagating the observation’s information downbhill.

In the second scenario (hereafter called the DOWN_O scenario), the volumetric soil

moisture at the lower part of the slope (x = 1500m) was observed. In the DOWN_O

scenario, I could observe the volumetric soil moisture in the lower part of the slope where

it does not rain and tried to infer the soil moisture in the upper part of the slope where it

heavily rains by propagating the observation’s information uphill.

Since I had the two synthetic reference runs (the HIGH_K and LOW_K references) and

the two observation scenarios (the UP_O and DOWN _ O scenarios), I implemented totally

four data assimilation experiments. Table 1 summarizes the data assimilation experiments

implemented in this study. For instance, in the HIGH_K-UP_O experiment, I chose the

HIGH_K reference and generated an ensemble of 50 realizations from the HIGH_K

reference. The soil moisture observations were generated from the HIGH_K reference at
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352  the location of x = 2500m and assimilated into the model every hour. The simulated
353  volumetric soil moisture of the data assimilation experiment was compared with that of
354  the HIGH_K reference.

355

356 In addition to the data assimilation (DA) experiments, I implemented the NoDA
357  experiment (also called the open-loop experiment in the literature of the LDAS study) in
358  which the ensemble was used but no observation data were assimilated. Please note that
359  in the NoDA experiment, the true rainfall rate and saturated hydraulic conductivity were
360  unknown so that I could not accurately estimate the synthetic true state variables. I will
361 evaluate how this negative impact of uncertainties in rainfall and saturated hydraulic
362  conductivity can be mitigated by data assimilation in the DA experiment.

363

364  As evaluation metrics, root-mean-square-error (RMSE) was used:

365 RMSE = /% kK (F;—T)? (14)

366  where k is the ensemble number, F; is the volumetric soil moisture simulated by the i-th
367  member in the DA or NoDA experiment, T is the volumetric soil moisture simulated by
368 the synthetic reference run.

369
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To evaluate the impact of data assimilation, the improvement rate (IR) was defined and

calculated by the following equation:

_ RMSEps—RMSENoDA
- RMSENopa

IR (15)

where RMSEp,, and RMSEy,p, are time-mean RMSE of the DA and NoDA
experiments, respectively. The negative IR indicates that data assimilation positively
impacts the simulation of soil moisture. The metrics described above was calculated in

the whole domain. In the DA experiment, soil moisture values before the update by ETKF

(i.e. initial guess) were used to calculate the metrics.

Four of 120-hour rain/no rain cycles were applied so that the computation period was 480
hours. The spin-up results in the first 120 hours were not used to calculate the evaluation
metrics. Since the steady state of groundwater level is not the scope of this paper, the long

spin-up is not absolutely necessary.

3.1.2. Results
Figure 2a shows the IR of the LOW_K-UP_O experiment. The time series of the DA and

NoDA experiment and the synthetic reference run in the LOW_K-UP_O experiment can
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be found in Figure S1. The data assimilation efficiently propagates the information of the
observations located in the upper part of the slope (see the black arrow in Figure 2a) both
horizontally and vertically. Despite the uncertainty in rainfall and hydraulic conductivity,
RMSE is reduced by data assimilation not only directly under the observation but also the
lower part of the slope where it does not rain. The estimated K gyrrqce = 0.00508 [m/h]
by ETKF is mostly identical to the synthetic truth. However, the increase of RMSE by
data assimilation can be found at the left edge of the domain, which is far from the location
of the observation. The impact of data assimilation on the surface soil moisture simulation
is small because the volumetric soil moisture’s RMSE of the NoDA experiment in this
surface soil layer is already small (< 0.01m>/m?) in the case of the LOW K reference so

that any improvements do not make sense.

Figure 2b shows the IR of the LOW_K-DOWN_O experiment (see also Figure S2 for
time series). The IR’s spatial pattern of the LOW_K-DOWN_O experiment is similar to
that of the LOW_K-UP_O experiment except for the left edge of the domain. It is
promising that I can accurately infer soil moisture in the region where it heavily rains
from the shallow soil moisture observations in the region where it does not rain. The

estimated K gyrrace & 0.00512 [m/h] by ETKF is mostly identical to the synthetic truth.
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406

407  Figure 3a shows the difference of time-mean RMSEs (RMSE,, in equation (15))
408  between the LOW_K-UP O and LOW_K-DOWN_O experiments. Although observing
409  the lower part of the slope slightly improves the soil moisture simulation at the left edge
410  of the domain compared with observing the upper part of the slope (the reason for it will
411  be explained later), there are few differences between the UP_O and DOWN_O scenarios
412  in the case of the LOW_K reference. The soil moisture observations have large
413  representativeness and I can efficiently infer soil moisture in the soil columns which are
414  horizontally and vertically far from the observations.

415

416  Figure 2c shows the IR of the HIGH K-UP_O experiment (see also Figure S3 for time
417  series). The data assimilation significantly reduces RMSE of the soil moisture simulation
418  directly under the observations (see the black arrow in Figure 2¢), which indicates that
419  the data assimilation efficiently propagates the information of the observations vertically.
420  The saturated hydraulic conductivity estimated by ETKF is mostly identical to the
421 synthetic truth (K syrrace ® 0.0204 [m/h]). However, the impact of the data assimilation
422 on the soil moisture simulation in the lower part of the slope around x=1500m is marginal

423  although there are large RMSE in the NoDA experiment (>0.05m>/m?) at the edge of the

24



https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
(© Author(s) 2020. CC BY 4.0 License.

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441

area where topography-driven surface flow reaches in the HIGH K reference (see Figure

1d).

Figure 2d shows the IR of the HIGH_K-DOWN O experiment (see also Figure S4 for
time series). Although the observations in the lower part of the slope (see the black arrow
in Figure 2d) significantly contribute to improving the soil moisture simulation in the
downstream area of the observation and accurately estimating K grpqce = 0.0208
[m/h], the impact of the data assimilation on the shallow soil moisture simulation around
x=500~1000m is marginal. As I found in the LOW_K-DOWN _O experiment, the shallow
soil moisture observations in the region where it does not rain can improve the soil
moisture simulation in the region where it heavily rains. However, the IR of the HIGH K-
DOWN_O experiment in the upper part of the slope is smaller than that of the LOW_K-

DOWN_O experiment (see Figure 2b and 2d).

The high representativeness of the observations which I found in the case of the LOW_K
reference (i.e. the small difference of RMSEs between two observation scenarios) cannot
be found in the case of the HIGH_K reference. Figure 3b shows the difference of time-

mean RMSEs (RMSEp, in equation (15)) between the HIGH_K-UP_O and HIGH K-
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DOWN_O experiments. Compared with the LOW_K reference case (Figure 3a), there

are significant differences between the UP_O and DOWN_O scenarios in the case of

higher saturated hydraulic conductivity. In this case, the vertical propagation of the

observations’ information is more efficient than the horizontal propagation.

The relatively low efficiency of the data assimilation and the low representativeness of

the soil moisture observations in the case of the HIGH K reference are caused by the

non-Gaussian background error distribution. I calculated KLD by comparing the PDF of

the NoDA ensemble (p in equation (13)) with the Gaussian PDF which has the mean and

variance of the NoDA ensemble (g in equation (13)). Figure 4 shows that the NoDA

ensemble in the case of the HIGH_K reference has stronger non-Gaussianity than the case

ofthe LOW_K reference especially in the shallow soil layers. The strong non-Gaussianity

of the NoDA ensemble generated from the HIGH_K reference can be found at the edge

of the area where the topography-driven surface flow reaches (Figure 1d). Figure 5 shows

that there is the bifurcation of the ensemble in this region when the ensemble is generated

from the HIGH_K reference. The process of topography-driven surface flows is switched

on if and only if the surface soil is saturated (see equation (4)) so that the ensemble tends

to be bifurcated into the members with surface flows and without surface flows. As 1
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460 mentioned in section 2.2, in the ETKF, the state and parameter variables are adjusted
461  assuming the Gaussian PDF of the model’s error and the linear relationship between
462  observed variables and unobserved variables. Therefore, the non-Gaussianity of the prior
463  ensemble induced by the strong non-linear dynamics of surface lateral flows makes the
464  ETKEF inefficient. It is more difficult to reconstruct 3-D fields of soil moisture in high
465  conductivity soils since the 1-D vertical water movement is more dominant. The absolute
466  RMSE of the NoDA experiment in the HIGH K reference is larger than the LOW_K
467  reference in many places (not shown). Please note that the non-Gaussianity can also be
468  found in the LOW_K reference at the edge of the domain (x=500m) due to the non-linear
469  dynamics of surface lateral flows, which causes the degradation of the soil moisture
470  simulation in the LOW_K-UP_O experiment (see Figure 2a).

471

472 One of the major simplifications in this experiment is spatially homogeneous surface
473  saturated hydraulic conductivity. The optimization of it can efficiently improve the soil
474  moisture simulation in the whole domain. However, the optimization of this
475  homogeneous surface saturated hydraulic conductivity has a limited impact on the soil
476  moisture simulation. Figure S5 shows the IR of the HIGH K-DOWN_O experiment

477  where the parameter optimization by ETKF is switched off. Even if I do not optimize the
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478  surface saturated hydraulic conductivity, I could obtain the similar IR to the original
479  experiment and the shallow soil moisture observations in the region where it does not rain
480  can improve the soil moisture simulation in the region where it heavily rains. The
481  horizontal propagation of the observations’ information shown in this experiment was
482  brought out not only by the estimation of spatially homogeneous saturated hydraulic
483  conductivity but also by the adjustment of state variables (i.e., pressure head and
484  volumetric soil moisture).

485

486  Please note that the improvement of the soil moisture simulation cannot be found if the
487  topography-driven surface flow is neglected. Figure S6 shows the IR of the LOW-
488 K DOWN-O experiment where the topography-driven surface flow is neglected in the
489  ParFlow simulation. Please note that although many conventional land surface models
490  neglected or parameterized lateral flows, this assumption can be applied only in the coarse
491  spatial resolution (>25km), which is not the case of this experimental setting. The
492 imperfect model physics of ParFlow substantially degrades the skill to simulate soil
493  moisture and data assimilation cannot compensate this degradation. This point will also
494  be discussed in the section 3.2 more deeply.

495
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3.2. Simple 3-D slope with heterogeneous hydraulic conductivity

3.2.1. Experiment design

To further demonstrate how land data assimilation works with topography-driven surface
lateral flows, I implemented another synthetic experiment which is more realistic than
that shown in section 3.1. The 3-D domain has a horizontal extension of 4000 mx4000m
and a vertical extension of 3m. The domain was horizontally discretized into 40x40 grid
cells with a size of 100mXx100m and vertically discretized into 30 grid cells with a size
of 0.1m. The domain has a 10% slope in both x and y directions (see Figure 6a). The
parameters of the van Genuchten relationship, porosity and Manning’s coefficient were

set to the same variables for the synthetic experiment in section 3.1.

The spatially heterogeneous surface saturated hydraulic conductivity was generated
following Kurtz et al. (2016). The field of log;o(Kssurface) Was generated by two-
dimensional unconditioned sequential Gaussian simulation. A Gaussian variogram with
nugget, sill, and range values of 0.0 log,o(m/h), 0.1 log;q(m?h?), and 12 model
grids (1200m), respectively was used to simulate the spatial distribution of
l0g10(Kssurface)- A constant value of -2.30 log;o(m/h) (i.e. 0.005 (m/h)) was added

to the generated field so that the mean of the logarithm of surface saturated hydraulic
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conductivity was set to -2.30 (i.e. 0.005(m/h)). This method to generate the field of the
saturated hydraulic conductivity has been used previously (e.g., Kurtz et al. 2016).
Subsurface saturated hydraulic conductivity was calculated by equation (3). An ensemble
of 51 realizations of 1091 (Ks surface) Was generated and one of them was chosen as a
synthetic reference (Figure 6a). The remaining 50 members were used for data

assimilation experiments.

A rainfall rate R(x,y) (mm/h) was modelled by a logistic function:

Rmax
R(xy) = 1+100exp (-0.2x22) (16)

where x and y are horizontal grid numbers (1 < x < 40,1 <y < 40). In the synthetic
reference, the maximum rainfall rate in the domain, R,,,,, was set to 50 (mm/h) (Figure
6b). This rainfall rate was applied for 3 hours and then the period with no rainfall and
evaporation of 0.075mm/h lasted for 117 hours. For data assimilation experiment, an
ensemble of 50 realization of R(x,y) was generated by adding a lognormal
multiplicative noise to R4, of the synthetic reference. The two parameters of the

lognormal distribution, commonly called u and o, were set to 0 and 0.15, respectively.
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Figure 6¢ shows the distribution of surface soil moisture in the synthetic reference run.

Strong rainfall rate applied in the upper part of the slope generates the topography-driven

surface lateral flows. The virtual hourly observations were generated by adding the

Gaussian white noise, whose mean is zero and standard deviation is 0.05 m?/m?, to the

volumetric surface soil moisture simulated by the synthetic reference run. Unlike the

experiment in section 3.1, only surface soil moisture can be observed in this synthetic

experiment, which makes this experiment more realistic since satellite sensors can

observe only surface soil moisture. Three different observing networks with different

observation densities were used (Figure 7). The observing networks shown in Figure 7a,

7b, and 7c have totally 1, 9, and 361 observations and are called obs1, obs9, and obs361,

respectively.

In the DA experiments, those virtual observations of surface soil moisture were

assimilated every hour to adjust pressure head and saturated hydraulic conductivity. As I

did in the section 3.1, the NoDA experiments were also implemented. The two different

configurations of ParFlow were used for both DA and NoDA experiments. In the first

configuration, called OF (Overland Flow), Parflow explicitly solves overland flows. In

the second configuration, called noOF, Parflow assumes the flat terrain for surface flows
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so that no overland flows are generated. Since the synthetic reference run explicitly

considers the topography-driven surface flow, the configuration of noOF assumes that the

model physics is imperfect. I implemented 8 numerical experiments which are

summarized in Table 2. For example, the OF DA obs9 experiment is the data

assimilation experiment with the observing network shown in Figure 7b, in which

Parflow explicitly solves the topography-driven surface flow. The noOF NoDA is the

model run without assimilating observations, in which Parflow does not consider the

topography-driven surface flow.

3.2.2. Results

Figure 8a shows the RMSE of soil moisture simulation of a second soil layer (i.e. 10-

20cm soil depth) in all 8 experiments (the same conclusion described below can be

obtained by analyzing all of shallow soil layers). When Parflow explicitly solves the

topography-driven surface flow, data assimilation substantially reduces RMSE of the soil

moisture simulation (green bars in Figure 8a). The OF_DA obs361 experiment has the

smallest RMSE so that a denser observing network is beneficial to estimate soil moisture.

Figure 8b shows the RMSE of the estimation of saturated surface hydraulic conductivity

32

Hydrology and
Earth System
Sciences

Discussions



https://doi.org/10.5194/hess-2020-106 Hydrology and
Preprint. Discussion started: 30 March 2020 Earth System
(© Author(s) 2020. CC BY 4.0 License. Sciences

Discussions
By

567  inall 8 experiments. Data assimilation also reduces the uncertainty in model’s parameters
568  (green bars in Figure 8b). However, the OF_DA obs361 experiment has larger RMSE
569  than the other DA experiments. This is because the adjustment of hydraulic conductivity
570  in the OF DA obs361 experiment greatly mitigates not only the errors induced by
571  uncertainty in hydraulic conductivity but those induced by uncertainty in rainfall rate. In
572  the OF configuration, there are two sources of errors, rainfall rate and hydraulic
573  conductivity. However, data assimilation can adjust only hydraulic conductivity in this
574  study. Although it is expected that the adjustment of hydraulic conductivity mainly
575  mitigates the errors of simulated volumetric soil moisture induced by uncertainty in
576  hydraulic conductivity, it also greatly mitigates those induced by uncertainty in rainfall
577  rate by adjusting the parameter in the incorrect direction when the number of observations
578  is large. Therefore, the assimilation of a large number of observations degrades the
579  estimation of saturated hydraulic conductivity despite the improvement of the soil
580  moisture simulation.

581

582  The noOF NoDA experiment has larger RMSE than the OF NoDA experiment due to
583  the negligence of the topography-driven surface flow. In the noOF configuration, data

584  assimilation also improves the soil moisture simulation (red bars in Figure 8a). The
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585 noOF DA obs361 experiment outperforms the OF NoDA experiment so that data
586  assimilation with a dense observing network can compensate the negative impact of
587  neglecting the topography-driven surface flow. Although data assimilation positively
588  impacts the parameter estimation, the denser observing network cannot reduce RMSE of
589  hydraulic conductivity estimation (red bars in Figure 8b). The negative impact of the
590  dense observations in the noOF DA obs361 experiment on the parameter estimation is
591  larger than in the OF DA obs361 experiment. In addition to rainfall rate and hydraulic
592  conductivity, the imperfect model physics (i.e., no topography-driven surface flow) is the
593  source of error in the noOF configuration. The assimilation of a large number of
594  observations degrades the estimation of saturated hydraulic conductivity because it
595  greatly mitigates the impact of all systematic errors which comes from three different
596  sources only by adjusting hydraulic conductivity.

597

598  Figure 9 shows the difference of RMSE of the soil moisture simulation between the DA
599  experiments and the OF NoDA experiment. In the DA configuration, the improvement
600  of the soil moisture estimation can be found in a large area even if there is a single
601  observation in the center of the domain (Figure 9a). Figure 9b shows that the increase of

602  the number of observations substantially improves the soil moisture simulation in the
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region which is affected by topography-driven surface flow (see also Figure 6¢). However,

the skill to simulate soil moisture is severely degraded in the lower-left corner of the

domain, which causes the stalled improvement from the OF DA obsl experiment to the

OF DA obs9 experiment shown in Figure 8a. Figure 9c shows that although the far

denser observing network can slightly mitigate this degradation, increasing the number

of observations cannot efficiently solve this issue. This degradation is caused by the

bifurcation of ensemble members at the edge of the area where topography-driven surface

flow reaches (Figure S7). Figure 10 shows KLD in the OF NoDA and noOF NoDA

experiments. Figure 10a clearly shows that the ensemble simulation of volumetric soil

moisture generates the strong non-Gaussianity at the edge of the area where topography-

driven surface flow reaches, which harms the efficiency of the ETKF. This finding is

consistent to what I found in the previous experiment in section 3.1.

In the noOF configuration, there are large errors in the area around 500<=x, y <=1500

since the increase of soil moisture in this area is caused by the topography-driven surface

flow which is neglected in the noOF configuration. Figures 9d and 9e show that the sparse

observations cannot completely remove this degradation caused by imperfect model

physics. Figure 9f shows that the noOF DA obs361 can outperform the OF NoDA
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experiment in exchange for the degradation of the parameter estimation as I found in

Figure 8. The unstable behavior of the ETKF found in the OF configuration does not

occur when the topography-driven surface flow is neglected since the ensemble

simulation does not generate the non-Gaussian background distribution (Figure 10b).

Although ETKF can significantly improve the simulation skill of the hyperresolution land

model in many cases, I found its limitation when it is applied to the problems with the

topography-driven surface lateral flows. Figure 10 clearly indicates that this limitation

appears only if lateral water flows are explicitly considered.

4. Discussion

In this study, I revealed that the hyperresolution integrated surface-subsurface

hydrological model gives the unique opportunity to effectively use soil moisture

observations to improve the soil moisture simulation in terms of a horizontal propagation

of observation’s information in a model space. I found that the explicit calculation of the

topography-driven surface flow has an important role in propagating the information of

soil moisture observation horizontally by data assimilation even if there is considerable
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639  heterogeneity of meteorological forcing. It is possible that the soil moisture observations
640  in the area where it does not heavily rain can improve the soil moisture simulation in the
641  severe rainfall area.

642

643  This potential cannot be brought out in the conventional 1-D LSM where sub-grid scale
644  surface runoff is parameterized and the surface flows in one grid do not move to the
645  adjacent grids. I found that neglecting the topography-driven surface flow causes
646  significant bias in the soil moisture simulation and this bias cannot be completely
647  mitigated by data assimilation especially in the case of a sparse observing network.
648  However, I found that even if the model uses imperfect physics which neglects the
649  interaction between topography-driven surface lateral flows and subsurface soil moisture,
650  assimilating soil moisture observations into the model’s three-dimensional state and
651  parameter space can improve the skill to estimate soil moisture and hydraulic conductivity.
652  This finding implies that the conventional 1-D LSM with full 3-D data assimilation may
653  be a computationally cheap and reasonable choice in some cases although many land data
654  assimilation systems with the conventional 1-D LSM currently update state variables only
655  in a single model’s horizontal grid which is identical to the location of the observation.

656

37



https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
(© Author(s) 2020. CC BY 4.0 License.

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

673

The conventional ensemble data assimilation (i.e. ETKF) severely suffers from the non-

Gaussian background error PDFs caused by the strongly nonlinear dynamics of the

topography-driven surface flow although it has been widely used by previous studies (e.g.,

Camporese et al. (2009); Camporese et al. (2010); Ridler et al. (2014); Zhang et al. (2015);

Kurtz et al. (2016); Zhang et al. (2018)). The efficiency of ETKF to propagate the

information of observations horizontally in the model space is limited in the edge of the

area where the topography-driven surface flow reaches. Please note that the low

representativeness of the soil moisture observations in the case of the HIGH K reference

shown in section 3.1 is due to the core assumption of the Kalman filter that the error PDFs

follow the Gaussian distribution so that the increase of the ensemble size cannot solve

this issue. I implemented the data assimilation experiment in the case of the HIGH K

reference with an ensemble size of 500, which is 10 times larger than the original

experiments shown in section 3.1, and found no significant improvement of the soil

moisture simulation (not shown). Some studies revealed that volumetric soil moisture

distributions follow the Gaussian distribution better than pressure head so that they

recommend to update soil moisture as a state variable (e.g., Zhang et al. (2018)). However,

in this study, I found that volumetric soil moisture distributions have bimodal structure
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674  and do not follow the Gaussian distribution. The limitation of ensemble Kalman filters
675  found in this study does not depend on the updated state variables.

676

677  The spatially dense soil moisture observations are needed to efficiently constrain state
678  variables at the edge of surface flows. High resolution soil moisture remote sensing based
679  on satellite active and passive combined microwave observations at the 1 km spatial
680  resolution (e.g., He et al. 2018) and the assimilation of those data (Lievens et al. 2017)
681 may be important in the era of the hyperresolution land modeling. High resolution
682  observations of surface inundated water from satellite imagery with a spatial resolution
683  finer than 100 m (e.g., Sakamoto et al. 2007; Arnesen et al. 2013) may also be useful.
684  However, the numerical experiment in section 3.2 implies that the dense observing
685  network of surface soil moisture cannot completely remove the negative impact of the
686  non-Gaussian background PDF.

687

688  Since there is a nonlinear relationship between observed and unobserved variables
689  sampled by an ensemble, a localization method, which spatially restricts the impact of
690  assimilating observations, is crucially needed for real-world applications. In this study,

691  assimilating observation impacted everywhere in the computational domain. If the
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localization method is applied, assimilating observation influences state variables of the

model grids which are near to the location of assimilated observations. The results of this

study imply that the optimal localization radius strongly depends on the model parameter

(i.e. saturated hydraulic conductivity). Rasmussen et al. (2015) successfully applied the

adaptive localization method (Anderson 2007; Bishop and Hodyss 2009) to the data

assimilation of groundwater observations into a hydrological model. It is appropriate to

adaptively determine the localization radius considering the lack of prior knowledge of

how soil moisture simulated by an ensemble is horizontally correlated.

Reducing the uncertainty in rainfall positively impacts the efficiency of data assimilation

since the bifurcation of simulated soil moisture found in Figure 5c is originally induced

by the uncertainty in rainfall. Although assimilating land hydrological observations to

improve the rainfall input has been intensively investigated (e.g., Sawada et al. 2018;

Herrnegger et al. 2015; Crow et al. 2011; Vrugt et al. 2008), it has yet to be applied to

hyperresolution land models. Please note that the parameters of the lognormal distribution

to model the uncertainty in rainfall were specified to make the rainfall PDF similar to the

Gaussian distribution. I chose the lognormal distribution in order not to generate negative

rainfall values and I intended not to introduce non-Gaussianity into the external forcing.
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The rainfall input which follows the Gaussian PDF was transformed into the non-

Gaussian PDF of the background error by the strongly nonlinear dynamics of the

topography-driven surface flow.

To explicitly consider non-Gaussianity and non-linear relationship between observed and

unobserved variables induced by the topography-driven surface flow, the particle filters

may be useful. The particle filter can represent a probability distribution (including non-

Gaussian distributions) directly by an ensemble. Particle filters have been intensively

applied to conventional 1-D LSMs (e.g., Sawada et al. 2015; Qin et al. 2009) and lumped

hydrological models (e.g., Yan and Moradkhani 2016; Vrugt et al. 2013). Although

particle filtering in a high dimensional system suffers from the “curse of dimensionality”

(e.g., Snyder et al. 2008), some studies developed the methodology to improve the

efficiency of particle filtering (e.g., van Leeuwen 2009; Poterjoy et al. 2019). The

applicability of particle filtering to 3-D hyperresolution land models should be assessed

in the future.

Since the synthetic numerical experiments in this paper adopted the simple and

minimalistic setting, the findings of this paper may be exaggerated. There are no river
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channels in the synthetic experiment so that the skill to simulate river water level and

discharge cannot be discussed, which is the major limitation of this study. The simple

representation of soil properties is also a limitation of this study. In future work, the

contributions of the topography-driven surface runoff process to the data assimilation of

hydrological observations should be quantified in real-world applications. In addition, in

the virtual experiment of this paper, I neglected some of the important land processes such

as transpiration, canopy interception, snow, and frozen soil. These processes affect the

source term of equation (1) in hyper-resolution land models (e.g., Shrestha et al. 2014).

Since the inclusion of the neglected processes do not change the structure of the original

ParFlow, the findings of this study can be robust to the models which include these

processes. Although they are generally not primary factors in the propagation of overland

flows generated by extreme rainfall, which has a shorter timescale than the neglected

processes, those processes should be considered in the future.

The other limitation of this study is that I could not thoroughly evaluate the skill of the

ensemble data assimilation to quantify the uncertainty of its prediction. Following

Abbazadeh et al. (2019), I calculated the 95% exceedance ratio and found that the

ensemble forecast was systematically overconfident (not shown). In the synthetic
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experiments of this study, the number of rainfall events was small, and the timing and

magnitude of rainfall were not diversified. Due to this limited amount of data, it is difficult

to deeply discuss the accuracy of the quantified uncertainty by data assimilation. While

the skill of lumped hydrological models was often evaluated by the probabilistic

performance measures such as the 95% exceedance ratio (e.g., Abbazadeh et al. (2019)),

the uncertainty quantification of the simulation of hyper-resolution land models is in its

infancy. How surface lateral flows affect the accuracy of the uncertainty quantification by

data assimilation should be investigated using more realistic data.

5. Conclusions

The simplified synthetic experiments of this study indicate that topography-driven lateral

surface flows induced by heavy rainfalls do matter for data assimilation of hydrological

observations into hyperresolution land models. Even if there is extreme heterogeneity of

rainfall, the information of soil moisture observations can be propagated horizontally in

the model space and the soil moisture simulation can be improved by the ensemble

Kalman filter. However, the nonlinear dynamics of the topography-driven surface flow

induces the non-Gaussianity of the model error, which harms the efficiency of data
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assimilation of soil moisture observations. It is difficult to efficiently constrain model

states at the edge of the area where the topography-driven surface flow reaches by linear-

Gaussian filters, which brings the new challenge in land data assimilation for

hyperresolution land models. Future work will focus on the real-world applications using

intense in-situ soil moisture observation networks and/or high-resolution satellite soil

moisture observations.
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Table 1. Configuration of the data assimilation experiments in section 3.1.

hydraulic conductivity
[m/h]

observation's location

[m]

Sciences

Discussions

LOW_K-UP_O
LOW_K-DOWN_O
HIGH_K-UP_O

HIGH_K-DOWN_O

Table 2. Configuration of the data assimilation experiments in section 3.2

0.005
0.005
0.02
0.02

overland flows

observing network

noOF NoDA none no data assimilation
noOF DA obsl none Figure 7a
noOF DA obs9 none Figure 7b
noOF_DA obs361 none Figure 7¢
OF NoDA simulated no data assimilation
OF DA obsl simulated Figure 7a
OF DA obs9 simulated Figure 7b
OF DA obs361 simulated Figure 7¢
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Figure 1. Distributions of volumetric soil moisture simulated by the synthetic reference runs. (a) The
distribution of volumetric soil moisture [m>*/m*] simulated by the LOW_K synthetic reference run at t = Oh.
The schematic of the configuration of the synthetic reference runs is also shown (see also section 3). (b) same

as (a) but at t = 130h. (c,d) same as (a,b) but for the HIGH_K synthetic reference run.
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112 Figure 2. The improvement rates of the (a) LOW_K-UP_O, (b) LOW_K-DOWN_O, (c) HIGH K UP_O,

113 (d) HIGH_K-DOWN O experiments (see Table 1 and section 3). Black arrows show the locations of the soil

114  moisture observations in each experiment.
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Figure 3. (a) The difference of time-mean RMSEs between the LOW_K-UP_O and LOW_K-DOWN_O
experiments (see Table 1 and section 3). Red (blue) color indicates that the observations in the upper (lower)
part of the slope reduce time-mean RMSE by data assimilation better than those in the lower (upper) part of
the slope (see also arrows which are the locations of the observations). (b) same as (a) but for the difference

between the HIGH K-UP_O and HIGH_K-DOWN_O experiments.
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124  Figure 4. The Kullback-Leibler divergence of the NoDA experiment generated by (a) the LOW_K reference

125  and (b) the HIGH K reference at t = 130h (see also Figure 1b and 1d).

126

67



https://doi.org/10.5194/hess-2020-106
Preprint. Discussion started: 30 March 2020
(© Author(s) 2020. CC BY 4.0 License.

Hydrology and
Earth System
Sciences

Discussions

0.40

16 ) 30 )
14
25
12
20
10
> >
v 13
g @
g 9 S5
o o
Q [
& =
6
10!
4
5
2
o
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 035
soil moisture soil moisture
7 ) a5 )
40
6
35
5
30
> >
o4 %)
2 228
ﬂ) Q
s &
93 9 20
£ =
15
2
10
1
5
o o
0.00 0.05 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

soil moisture

127

128

129

130

131

132  z=0.5m, and t=130h.

133

68

0.40
soil moisture

Figure 5. (a) The histogram (blue bars) of the volumetric soil moisture simulated by the NoDA experiment

(see section 3) with the LOW_K reference at x=1500m, z=0.5m, and t=130h (see also Figure 4). Red line

shows the Gaussian distribution with the mean and variance sampled by the ensemble. (b) same as (a) but at

x=2500m, z=0.5m, and t=130h. (c) same as (a) but for the HIGH K reference. (d) same as (c) but at x=2500m,



Hydrology and
Earth System
Sciences
Discussions

BY

() ®

Preprint. Discussion started: 30 March 2020

https://doi.org/10.5194/hess-2020-106
(© Author(s) 2020. CC BY 4.0 License.

134

50

0010

. ©)

0.008 40 3500 0.32
0.007 35 3000 0.28
.00 o 2500 o2s
0.005 25 2000 0.20
o.004 o 1500 o1s
0.003 15 1000 0.12
0.002 10 500, 0.08

0 0

0.40

y [m]

1000 1500 2000 2500 3000 3500 0.002 0 500 1000 1500 2000 2500 3000 3500 & 0 500 1000 1500 2000 2500 3000 3500
x [m] x [m] x [m]

0.1 .

0.00

135

136  Figure 6. (a) Distribution of surface saturated hydraulic conductivity [m/h] in the synthetic reference. (b) Distribution of rainfall rate [mm/h] in the synthetic

137  reference. (c) Surface volumetric soil moisture [m*/m?] at t = 5 [h] in the synthetic reference.
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140  Figure 7. Observing networks. Black boxes are observed grids. (a) obs1, (b) obs9, (c) obs361 See also section 3.2.1.

141

2000
x [m]

2000
x [m]

@
3
3

2000
x [m]

SHEEEEEEESEEEEEENEEENEENEDR

w
3
3
w
b
3

70



https://doi.org/10.5194/hess-2020-106 Hydrology and
Preprint. Discussion started: 30 March 2020 Earth System
(© Author(s) 2020. CC BY 4.0 License. Sciences

Discussions
oY

142

0.045

0.040

OF

0.035

RMSE of soil moisture [m3/m3]
o o
o =)
N w
w o

DA_obsl  DA_obs9 DA_obs361 NoDA DA obsl DA _obs9 DA_obs361

0.007

0.006

0.005

0.004

RMSE of hydraulic conductivity [m/h]

0.003

0:002 NoDA DA_obsl  DA_obs9 DA _obs361 NoDA DA_obsl DA _obs9 DA _obs361

143

144  Figure 8. Time-mean RMSEs of the estimation of (a) soil moisture and (b) hydraulic conductivity. Red and

145  green bars are results of the noOF and OF configuration, respectively (see section 3.2.1 and Table 2).
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148  Figure 9. Differences of time-mean soil moisture RMSEs between the DA experiments and the OF_NoDA experiment. (a) OF_DA_obsl, (b) OF _DA_obs9 (c)
149  OF_DA o0bs361 (d) noOF DA obsl, (¢) noOF_DA_obs9, (f) noOF_DA_obs361.
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152  Figure 10. The Kullback-Leibler divergence of ensemble members generated by the (a) OF_NoDA and (b)

153  noOF NoDA experiments at t =4 [h].
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